mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2024-12-27 22:27:15 +01:00
889 lines
23 KiB
C++
889 lines
23 KiB
C++
|
|
||
|
/***
|
||
|
* ---------------------------------
|
||
|
* Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>
|
||
|
*
|
||
|
* This file was ported from mpr.c file, part of libccd.
|
||
|
* The Minkoski Portal Refinement implementation was ported
|
||
|
* to OpenCL by Erwin Coumans for the Bullet 3 Physics library.
|
||
|
* at http://github.com/erwincoumans/bullet3
|
||
|
*
|
||
|
* Distributed under the OSI-approved BSD License (the "License");
|
||
|
* see <http://www.opensource.org/licenses/bsd-license.php>.
|
||
|
* This software is distributed WITHOUT ANY WARRANTY; without even the
|
||
|
* implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
* See the License for more information.
|
||
|
*/
|
||
|
|
||
|
#ifndef B3_MPR_PENETRATION_H
|
||
|
#define B3_MPR_PENETRATION_H
|
||
|
|
||
|
#include "Bullet3Common/shared/b3PlatformDefinitions.h"
|
||
|
#include "Bullet3Common/shared/b3Float4.h"
|
||
|
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h"
|
||
|
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h"
|
||
|
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h"
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
#define B3_MPR_SQRT sqrtf
|
||
|
#else
|
||
|
#define B3_MPR_SQRT sqrt
|
||
|
#endif
|
||
|
#define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))
|
||
|
#define B3_MPR_FABS fabs
|
||
|
|
||
|
#define B3_MPR_TOLERANCE 1E-6f
|
||
|
#define B3_MPR_MAX_ITERATIONS 1000
|
||
|
|
||
|
struct _b3MprSupport_t
|
||
|
{
|
||
|
b3Float4 v; //!< Support point in minkowski sum
|
||
|
b3Float4 v1; //!< Support point in obj1
|
||
|
b3Float4 v2; //!< Support point in obj2
|
||
|
};
|
||
|
typedef struct _b3MprSupport_t b3MprSupport_t;
|
||
|
|
||
|
struct _b3MprSimplex_t
|
||
|
{
|
||
|
b3MprSupport_t ps[4];
|
||
|
int last; //!< index of last added point
|
||
|
};
|
||
|
typedef struct _b3MprSimplex_t b3MprSimplex_t;
|
||
|
|
||
|
inline b3MprSupport_t *b3MprSimplexPointW(b3MprSimplex_t *s, int idx)
|
||
|
{
|
||
|
return &s->ps[idx];
|
||
|
}
|
||
|
|
||
|
inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size)
|
||
|
{
|
||
|
s->last = size - 1;
|
||
|
}
|
||
|
|
||
|
inline int b3MprSimplexSize(const b3MprSimplex_t *s)
|
||
|
{
|
||
|
return s->last + 1;
|
||
|
}
|
||
|
|
||
|
inline const b3MprSupport_t *b3MprSimplexPoint(const b3MprSimplex_t *s, int idx)
|
||
|
{
|
||
|
// here is no check on boundaries
|
||
|
return &s->ps[idx];
|
||
|
}
|
||
|
|
||
|
inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s)
|
||
|
{
|
||
|
*d = *s;
|
||
|
}
|
||
|
|
||
|
inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a)
|
||
|
{
|
||
|
b3MprSupportCopy(s->ps + pos, a);
|
||
|
}
|
||
|
|
||
|
inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2)
|
||
|
{
|
||
|
b3MprSupport_t supp;
|
||
|
|
||
|
b3MprSupportCopy(&supp, &s->ps[pos1]);
|
||
|
b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]);
|
||
|
b3MprSupportCopy(&s->ps[pos2], &supp);
|
||
|
}
|
||
|
|
||
|
inline int b3MprIsZero(float val)
|
||
|
{
|
||
|
return B3_MPR_FABS(val) < FLT_EPSILON;
|
||
|
}
|
||
|
|
||
|
inline int b3MprEq(float _a, float _b)
|
||
|
{
|
||
|
float ab;
|
||
|
float a, b;
|
||
|
|
||
|
ab = B3_MPR_FABS(_a - _b);
|
||
|
if (B3_MPR_FABS(ab) < FLT_EPSILON)
|
||
|
return 1;
|
||
|
|
||
|
a = B3_MPR_FABS(_a);
|
||
|
b = B3_MPR_FABS(_b);
|
||
|
if (b > a)
|
||
|
{
|
||
|
return ab < FLT_EPSILON * b;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return ab < FLT_EPSILON * a;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline int b3MprVec3Eq(const b3Float4 *a, const b3Float4 *b)
|
||
|
{
|
||
|
return b3MprEq((*a).x, (*b).x) && b3MprEq((*a).y, (*b).y) && b3MprEq((*a).z, (*b).z);
|
||
|
}
|
||
|
|
||
|
inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec, __global const b3ConvexPolyhedronData_t *hull, b3ConstArray(b3Float4) verticesA)
|
||
|
{
|
||
|
b3Float4 supVec = b3MakeFloat4(0, 0, 0, 0);
|
||
|
float maxDot = -B3_LARGE_FLOAT;
|
||
|
|
||
|
if (0 < hull->m_numVertices)
|
||
|
{
|
||
|
const b3Float4 scaled = supportVec;
|
||
|
int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot);
|
||
|
return verticesA[hull->m_vertexOffset + index];
|
||
|
}
|
||
|
|
||
|
return supVec;
|
||
|
}
|
||
|
|
||
|
B3_STATIC void b3MprConvexSupport(int pairIndex, int bodyIndex, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
const b3Float4 *_dir, b3Float4 *outp, int logme)
|
||
|
{
|
||
|
//dir is in worldspace, move to local space
|
||
|
|
||
|
b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos;
|
||
|
b3Quat orn = cpuBodyBuf[bodyIndex].m_quat;
|
||
|
|
||
|
b3Float4 dir = b3MakeFloat4((*_dir).x, (*_dir).y, (*_dir).z, 0.f);
|
||
|
|
||
|
const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn), dir);
|
||
|
|
||
|
//find local support vertex
|
||
|
int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx;
|
||
|
|
||
|
b3Assert(cpuCollidables[colIndex].m_shapeType == SHAPE_CONVEX_HULL);
|
||
|
__global const b3ConvexPolyhedronData_t *hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex];
|
||
|
|
||
|
b3Float4 pInA;
|
||
|
if (logme)
|
||
|
{
|
||
|
// b3Float4 supVec = b3MakeFloat4(0,0,0,0);
|
||
|
float maxDot = -B3_LARGE_FLOAT;
|
||
|
|
||
|
if (0 < hull->m_numVertices)
|
||
|
{
|
||
|
const b3Float4 scaled = localDir;
|
||
|
int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot);
|
||
|
pInA = cpuVertices[hull->m_vertexOffset + index];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
pInA = b3LocalGetSupportVertex(localDir, hull, cpuVertices);
|
||
|
}
|
||
|
|
||
|
//move vertex to world space
|
||
|
*outp = b3TransformPoint(pInA, pos, orn);
|
||
|
}
|
||
|
|
||
|
inline void b3MprSupport(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
const b3Float4 *_dir, b3MprSupport_t *supp)
|
||
|
{
|
||
|
b3Float4 dir;
|
||
|
dir = *_dir;
|
||
|
b3MprConvexSupport(pairIndex, bodyIndexA, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &supp->v1, 0);
|
||
|
dir = *_dir * -1.f;
|
||
|
b3MprConvexSupport(pairIndex, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &supp->v2, 0);
|
||
|
supp->v = supp->v1 - supp->v2;
|
||
|
}
|
||
|
|
||
|
inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center)
|
||
|
{
|
||
|
center->v1 = cpuBodyBuf[bodyIndexA].m_pos;
|
||
|
center->v2 = cpuBodyBuf[bodyIndexB].m_pos;
|
||
|
center->v = center->v1 - center->v2;
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z)
|
||
|
{
|
||
|
(*v).x = x;
|
||
|
(*v).y = y;
|
||
|
(*v).z = z;
|
||
|
(*v).w = 0.f;
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w)
|
||
|
{
|
||
|
(*v).x += (*w).x;
|
||
|
(*v).y += (*w).y;
|
||
|
(*v).z += (*w).z;
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w)
|
||
|
{
|
||
|
*v = *w;
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Scale(b3Float4 *d, float k)
|
||
|
{
|
||
|
*d *= k;
|
||
|
}
|
||
|
|
||
|
inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b)
|
||
|
{
|
||
|
float dot;
|
||
|
|
||
|
dot = b3Dot3F4(*a, *b);
|
||
|
return dot;
|
||
|
}
|
||
|
|
||
|
inline float b3MprVec3Len2(const b3Float4 *v)
|
||
|
{
|
||
|
return b3MprVec3Dot(v, v);
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Normalize(b3Float4 *d)
|
||
|
{
|
||
|
float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d));
|
||
|
b3MprVec3Scale(d, k);
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b)
|
||
|
{
|
||
|
*d = b3Cross3(*a, *b);
|
||
|
}
|
||
|
|
||
|
inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w)
|
||
|
{
|
||
|
*d = *v - *w;
|
||
|
}
|
||
|
|
||
|
inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir)
|
||
|
{
|
||
|
b3Float4 v2v1, v3v1;
|
||
|
|
||
|
b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
b3MprVec3Cross(dir, &v2v1, &v3v1);
|
||
|
b3MprVec3Normalize(dir);
|
||
|
}
|
||
|
|
||
|
inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal,
|
||
|
const b3Float4 *dir)
|
||
|
{
|
||
|
float dot;
|
||
|
dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v);
|
||
|
return b3MprIsZero(dot) || dot > 0.f;
|
||
|
}
|
||
|
|
||
|
inline int portalReachTolerance(const b3MprSimplex_t *portal,
|
||
|
const b3MprSupport_t *v4,
|
||
|
const b3Float4 *dir)
|
||
|
{
|
||
|
float dv1, dv2, dv3, dv4;
|
||
|
float dot1, dot2, dot3;
|
||
|
|
||
|
// find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}
|
||
|
|
||
|
dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir);
|
||
|
dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir);
|
||
|
dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir);
|
||
|
dv4 = b3MprVec3Dot(&v4->v, dir);
|
||
|
|
||
|
dot1 = dv4 - dv1;
|
||
|
dot2 = dv4 - dv2;
|
||
|
dot3 = dv4 - dv3;
|
||
|
|
||
|
dot1 = B3_MPR_FMIN(dot1, dot2);
|
||
|
dot1 = B3_MPR_FMIN(dot1, dot3);
|
||
|
|
||
|
return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE;
|
||
|
}
|
||
|
|
||
|
inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal,
|
||
|
const b3MprSupport_t *v4,
|
||
|
const b3Float4 *dir)
|
||
|
{
|
||
|
float dot;
|
||
|
dot = b3MprVec3Dot(&v4->v, dir);
|
||
|
return b3MprIsZero(dot) || dot > 0.f;
|
||
|
}
|
||
|
|
||
|
inline void b3ExpandPortal(b3MprSimplex_t *portal,
|
||
|
const b3MprSupport_t *v4)
|
||
|
{
|
||
|
float dot;
|
||
|
b3Float4 v4v0;
|
||
|
|
||
|
b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0);
|
||
|
if (dot > 0.f)
|
||
|
{
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0);
|
||
|
if (dot > 0.f)
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 1, v4);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 3, v4);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0);
|
||
|
if (dot > 0.f)
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 2, v4);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 1, v4);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
__global int *hasSepAxis,
|
||
|
b3MprSimplex_t *portal)
|
||
|
{
|
||
|
b3Float4 dir, va, vb;
|
||
|
float dot;
|
||
|
int cont;
|
||
|
|
||
|
// vertex 0 is center of portal
|
||
|
b3FindOrigin(bodyIndexA, bodyIndexB, cpuBodyBuf, b3MprSimplexPointW(portal, 0));
|
||
|
// vertex 0 is center of portal
|
||
|
b3MprSimplexSetSize(portal, 1);
|
||
|
|
||
|
b3Float4 zero = b3MakeFloat4(0, 0, 0, 0);
|
||
|
b3Float4 *b3mpr_vec3_origin = &zero;
|
||
|
|
||
|
if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin))
|
||
|
{
|
||
|
// Portal's center lies on origin (0,0,0) => we know that objects
|
||
|
// intersect but we would need to know penetration info.
|
||
|
// So move center little bit...
|
||
|
b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);
|
||
|
b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va);
|
||
|
}
|
||
|
|
||
|
// vertex 1 = support in direction of origin
|
||
|
b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
b3MprVec3Scale(&dir, -1.f);
|
||
|
b3MprVec3Normalize(&dir);
|
||
|
|
||
|
b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 1));
|
||
|
|
||
|
b3MprSimplexSetSize(portal, 2);
|
||
|
|
||
|
// test if origin isn't outside of v1
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir);
|
||
|
|
||
|
if (b3MprIsZero(dot) || dot < 0.f)
|
||
|
return -1;
|
||
|
|
||
|
// vertex 2
|
||
|
b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
if (b3MprIsZero(b3MprVec3Len2(&dir)))
|
||
|
{
|
||
|
if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin))
|
||
|
{
|
||
|
// origin lies on v1
|
||
|
return 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// origin lies on v0-v1 segment
|
||
|
return 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
b3MprVec3Normalize(&dir);
|
||
|
b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 2));
|
||
|
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir);
|
||
|
if (b3MprIsZero(dot) || dot < 0.f)
|
||
|
return -1;
|
||
|
|
||
|
b3MprSimplexSetSize(portal, 3);
|
||
|
|
||
|
// vertex 3 direction
|
||
|
b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,
|
||
|
&b3MprSimplexPoint(portal, 0)->v);
|
||
|
b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,
|
||
|
&b3MprSimplexPoint(portal, 0)->v);
|
||
|
b3MprVec3Cross(&dir, &va, &vb);
|
||
|
b3MprVec3Normalize(&dir);
|
||
|
|
||
|
// it is better to form portal faces to be oriented "outside" origin
|
||
|
dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
if (dot > 0.f)
|
||
|
{
|
||
|
b3MprSimplexSwap(portal, 1, 2);
|
||
|
b3MprVec3Scale(&dir, -1.f);
|
||
|
}
|
||
|
|
||
|
while (b3MprSimplexSize(portal) < 4)
|
||
|
{
|
||
|
b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, b3MprSimplexPointW(portal, 3));
|
||
|
|
||
|
dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir);
|
||
|
if (b3MprIsZero(dot) || dot < 0.f)
|
||
|
return -1;
|
||
|
|
||
|
cont = 0;
|
||
|
|
||
|
// test if origin is outside (v1, v0, v3) - set v2 as v3 and
|
||
|
// continue
|
||
|
b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v,
|
||
|
&b3MprSimplexPoint(portal, 3)->v);
|
||
|
dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
if (dot < 0.f && !b3MprIsZero(dot))
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3));
|
||
|
cont = 1;
|
||
|
}
|
||
|
|
||
|
if (!cont)
|
||
|
{
|
||
|
// test if origin is outside (v3, v0, v2) - set v1 as v3 and
|
||
|
// continue
|
||
|
b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v,
|
||
|
&b3MprSimplexPoint(portal, 2)->v);
|
||
|
dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
if (dot < 0.f && !b3MprIsZero(dot))
|
||
|
{
|
||
|
b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3));
|
||
|
cont = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (cont)
|
||
|
{
|
||
|
b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,
|
||
|
&b3MprSimplexPoint(portal, 0)->v);
|
||
|
b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,
|
||
|
&b3MprSimplexPoint(portal, 0)->v);
|
||
|
b3MprVec3Cross(&dir, &va, &vb);
|
||
|
b3MprVec3Normalize(&dir);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
b3MprSimplexSetSize(portal, 4);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
B3_STATIC int b3RefinePortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
b3MprSimplex_t *portal)
|
||
|
{
|
||
|
b3Float4 dir;
|
||
|
b3MprSupport_t v4;
|
||
|
|
||
|
for (int i = 0; i < B3_MPR_MAX_ITERATIONS; i++)
|
||
|
//while (1)
|
||
|
{
|
||
|
// compute direction outside the portal (from v0 throught v1,v2,v3
|
||
|
// face)
|
||
|
b3PortalDir(portal, &dir);
|
||
|
|
||
|
// test if origin is inside the portal
|
||
|
if (portalEncapsulesOrigin(portal, &dir))
|
||
|
return 0;
|
||
|
|
||
|
// get next support point
|
||
|
|
||
|
b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &v4);
|
||
|
|
||
|
// test if v4 can expand portal to contain origin and if portal
|
||
|
// expanding doesn't reach given tolerance
|
||
|
if (!portalCanEncapsuleOrigin(portal, &v4, &dir) || portalReachTolerance(portal, &v4, &dir))
|
||
|
{
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// v1-v2-v3 triangle must be rearranged to face outside Minkowski
|
||
|
// difference (direction from v0).
|
||
|
b3ExpandPortal(portal, &v4);
|
||
|
}
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos)
|
||
|
{
|
||
|
b3Float4 zero = b3MakeFloat4(0, 0, 0, 0);
|
||
|
b3Float4 *b3mpr_vec3_origin = &zero;
|
||
|
|
||
|
b3Float4 dir;
|
||
|
size_t i;
|
||
|
float b[4], sum, inv;
|
||
|
b3Float4 vec, p1, p2;
|
||
|
|
||
|
b3PortalDir(portal, &dir);
|
||
|
|
||
|
// use barycentric coordinates of tetrahedron to find origin
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,
|
||
|
&b3MprSimplexPoint(portal, 2)->v);
|
||
|
b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);
|
||
|
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,
|
||
|
&b3MprSimplexPoint(portal, 2)->v);
|
||
|
b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);
|
||
|
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);
|
||
|
|
||
|
sum = b[0] + b[1] + b[2] + b[3];
|
||
|
|
||
|
if (b3MprIsZero(sum) || sum < 0.f)
|
||
|
{
|
||
|
b[0] = 0.f;
|
||
|
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,
|
||
|
&b3MprSimplexPoint(portal, 3)->v);
|
||
|
b[1] = b3MprVec3Dot(&vec, &dir);
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,
|
||
|
&b3MprSimplexPoint(portal, 1)->v);
|
||
|
b[2] = b3MprVec3Dot(&vec, &dir);
|
||
|
b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,
|
||
|
&b3MprSimplexPoint(portal, 2)->v);
|
||
|
b[3] = b3MprVec3Dot(&vec, &dir);
|
||
|
|
||
|
sum = b[1] + b[2] + b[3];
|
||
|
}
|
||
|
|
||
|
inv = 1.f / sum;
|
||
|
|
||
|
b3MprVec3Copy(&p1, b3mpr_vec3_origin);
|
||
|
b3MprVec3Copy(&p2, b3mpr_vec3_origin);
|
||
|
for (i = 0; i < 4; i++)
|
||
|
{
|
||
|
b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1);
|
||
|
b3MprVec3Scale(&vec, b[i]);
|
||
|
b3MprVec3Add(&p1, &vec);
|
||
|
|
||
|
b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2);
|
||
|
b3MprVec3Scale(&vec, b[i]);
|
||
|
b3MprVec3Add(&p2, &vec);
|
||
|
}
|
||
|
b3MprVec3Scale(&p1, inv);
|
||
|
b3MprVec3Scale(&p2, inv);
|
||
|
|
||
|
b3MprVec3Copy(pos, &p1);
|
||
|
b3MprVec3Add(pos, &p2);
|
||
|
b3MprVec3Scale(pos, 0.5);
|
||
|
}
|
||
|
|
||
|
inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b)
|
||
|
{
|
||
|
b3Float4 ab;
|
||
|
b3MprVec3Sub2(&ab, a, b);
|
||
|
return b3MprVec3Len2(&ab);
|
||
|
}
|
||
|
|
||
|
inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P,
|
||
|
const b3Float4 *x0,
|
||
|
const b3Float4 *b,
|
||
|
b3Float4 *witness)
|
||
|
{
|
||
|
// The computation comes from solving equation of segment:
|
||
|
// S(t) = x0 + t.d
|
||
|
// where - x0 is initial point of segment
|
||
|
// - d is direction of segment from x0 (|d| > 0)
|
||
|
// - t belongs to <0, 1> interval
|
||
|
//
|
||
|
// Than, distance from a segment to some point P can be expressed:
|
||
|
// D(t) = |x0 + t.d - P|^2
|
||
|
// which is distance from any point on segment. Minimization
|
||
|
// of this function brings distance from P to segment.
|
||
|
// Minimization of D(t) leads to simple quadratic equation that's
|
||
|
// solving is straightforward.
|
||
|
//
|
||
|
// Bonus of this method is witness point for free.
|
||
|
|
||
|
float dist, t;
|
||
|
b3Float4 d, a;
|
||
|
|
||
|
// direction of segment
|
||
|
b3MprVec3Sub2(&d, b, x0);
|
||
|
|
||
|
// precompute vector from P to x0
|
||
|
b3MprVec3Sub2(&a, x0, P);
|
||
|
|
||
|
t = -1.f * b3MprVec3Dot(&a, &d);
|
||
|
t /= b3MprVec3Len2(&d);
|
||
|
|
||
|
if (t < 0.f || b3MprIsZero(t))
|
||
|
{
|
||
|
dist = b3MprVec3Dist2(x0, P);
|
||
|
if (witness)
|
||
|
b3MprVec3Copy(witness, x0);
|
||
|
}
|
||
|
else if (t > 1.f || b3MprEq(t, 1.f))
|
||
|
{
|
||
|
dist = b3MprVec3Dist2(b, P);
|
||
|
if (witness)
|
||
|
b3MprVec3Copy(witness, b);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (witness)
|
||
|
{
|
||
|
b3MprVec3Copy(witness, &d);
|
||
|
b3MprVec3Scale(witness, t);
|
||
|
b3MprVec3Add(witness, x0);
|
||
|
dist = b3MprVec3Dist2(witness, P);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// recycling variables
|
||
|
b3MprVec3Scale(&d, t);
|
||
|
b3MprVec3Add(&d, &a);
|
||
|
dist = b3MprVec3Len2(&d);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return dist;
|
||
|
}
|
||
|
|
||
|
inline float b3MprVec3PointTriDist2(const b3Float4 *P,
|
||
|
const b3Float4 *x0, const b3Float4 *B,
|
||
|
const b3Float4 *C,
|
||
|
b3Float4 *witness)
|
||
|
{
|
||
|
// Computation comes from analytic expression for triangle (x0, B, C)
|
||
|
// T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and
|
||
|
// Then equation for distance is:
|
||
|
// D(s, t) = | T(s, t) - P |^2
|
||
|
// This leads to minimization of quadratic function of two variables.
|
||
|
// The solution from is taken only if s is between 0 and 1, t is
|
||
|
// between 0 and 1 and t + s < 1, otherwise distance from segment is
|
||
|
// computed.
|
||
|
|
||
|
b3Float4 d1, d2, a;
|
||
|
float u, v, w, p, q, r;
|
||
|
float s, t, dist, dist2;
|
||
|
b3Float4 witness2;
|
||
|
|
||
|
b3MprVec3Sub2(&d1, B, x0);
|
||
|
b3MprVec3Sub2(&d2, C, x0);
|
||
|
b3MprVec3Sub2(&a, x0, P);
|
||
|
|
||
|
u = b3MprVec3Dot(&a, &a);
|
||
|
v = b3MprVec3Dot(&d1, &d1);
|
||
|
w = b3MprVec3Dot(&d2, &d2);
|
||
|
p = b3MprVec3Dot(&a, &d1);
|
||
|
q = b3MprVec3Dot(&a, &d2);
|
||
|
r = b3MprVec3Dot(&d1, &d2);
|
||
|
|
||
|
s = (q * r - w * p) / (w * v - r * r);
|
||
|
t = (-s * r - q) / w;
|
||
|
|
||
|
if ((b3MprIsZero(s) || s > 0.f) && (b3MprEq(s, 1.f) || s < 1.f) && (b3MprIsZero(t) || t > 0.f) && (b3MprEq(t, 1.f) || t < 1.f) && (b3MprEq(t + s, 1.f) || t + s < 1.f))
|
||
|
{
|
||
|
if (witness)
|
||
|
{
|
||
|
b3MprVec3Scale(&d1, s);
|
||
|
b3MprVec3Scale(&d2, t);
|
||
|
b3MprVec3Copy(witness, x0);
|
||
|
b3MprVec3Add(witness, &d1);
|
||
|
b3MprVec3Add(witness, &d2);
|
||
|
|
||
|
dist = b3MprVec3Dist2(witness, P);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dist = s * s * v;
|
||
|
dist += t * t * w;
|
||
|
dist += 2.f * s * t * r;
|
||
|
dist += 2.f * s * p;
|
||
|
dist += 2.f * t * q;
|
||
|
dist += u;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness);
|
||
|
|
||
|
dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2);
|
||
|
if (dist2 < dist)
|
||
|
{
|
||
|
dist = dist2;
|
||
|
if (witness)
|
||
|
b3MprVec3Copy(witness, &witness2);
|
||
|
}
|
||
|
|
||
|
dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2);
|
||
|
if (dist2 < dist)
|
||
|
{
|
||
|
dist = dist2;
|
||
|
if (witness)
|
||
|
b3MprVec3Copy(witness, &witness2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return dist;
|
||
|
}
|
||
|
|
||
|
B3_STATIC void b3FindPenetr(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
b3MprSimplex_t *portal,
|
||
|
float *depth, b3Float4 *pdir, b3Float4 *pos)
|
||
|
{
|
||
|
b3Float4 dir;
|
||
|
b3MprSupport_t v4;
|
||
|
unsigned long iterations;
|
||
|
|
||
|
b3Float4 zero = b3MakeFloat4(0, 0, 0, 0);
|
||
|
b3Float4 *b3mpr_vec3_origin = &zero;
|
||
|
|
||
|
iterations = 1UL;
|
||
|
for (int i = 0; i < B3_MPR_MAX_ITERATIONS; i++)
|
||
|
//while (1)
|
||
|
{
|
||
|
// compute portal direction and obtain next support point
|
||
|
b3PortalDir(portal, &dir);
|
||
|
|
||
|
b3MprSupport(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &dir, &v4);
|
||
|
|
||
|
// reached tolerance -> find penetration info
|
||
|
if (portalReachTolerance(portal, &v4, &dir) || iterations == B3_MPR_MAX_ITERATIONS)
|
||
|
{
|
||
|
*depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin, &b3MprSimplexPoint(portal, 1)->v, &b3MprSimplexPoint(portal, 2)->v, &b3MprSimplexPoint(portal, 3)->v, pdir);
|
||
|
*depth = B3_MPR_SQRT(*depth);
|
||
|
|
||
|
if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z))
|
||
|
{
|
||
|
*pdir = dir;
|
||
|
}
|
||
|
b3MprVec3Normalize(pdir);
|
||
|
|
||
|
// barycentric coordinates:
|
||
|
b3FindPos(portal, pos);
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
b3ExpandPortal(portal, &v4);
|
||
|
|
||
|
iterations++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal, float *depth, b3Float4 *dir, b3Float4 *pos)
|
||
|
{
|
||
|
// Touching contact on portal's v1 - so depth is zero and direction
|
||
|
// is unimportant and pos can be guessed
|
||
|
*depth = 0.f;
|
||
|
b3Float4 zero = b3MakeFloat4(0, 0, 0, 0);
|
||
|
b3Float4 *b3mpr_vec3_origin = &zero;
|
||
|
|
||
|
b3MprVec3Copy(dir, b3mpr_vec3_origin);
|
||
|
|
||
|
b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);
|
||
|
b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);
|
||
|
b3MprVec3Scale(pos, 0.5);
|
||
|
}
|
||
|
|
||
|
B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal,
|
||
|
float *depth, b3Float4 *dir, b3Float4 *pos)
|
||
|
{
|
||
|
// Origin lies on v0-v1 segment.
|
||
|
// Depth is distance to v1, direction also and position must be
|
||
|
// computed
|
||
|
|
||
|
b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);
|
||
|
b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);
|
||
|
b3MprVec3Scale(pos, 0.5f);
|
||
|
|
||
|
b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v);
|
||
|
*depth = B3_MPR_SQRT(b3MprVec3Len2(dir));
|
||
|
b3MprVec3Normalize(dir);
|
||
|
}
|
||
|
|
||
|
inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB,
|
||
|
b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,
|
||
|
b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData,
|
||
|
b3ConstArray(b3Collidable_t) cpuCollidables,
|
||
|
b3ConstArray(b3Float4) cpuVertices,
|
||
|
__global b3Float4 *sepAxis,
|
||
|
__global int *hasSepAxis,
|
||
|
float *depthOut, b3Float4 *dirOut, b3Float4 *posOut)
|
||
|
{
|
||
|
b3MprSimplex_t portal;
|
||
|
|
||
|
// if (!hasSepAxis[pairIndex])
|
||
|
// return -1;
|
||
|
|
||
|
hasSepAxis[pairIndex] = 0;
|
||
|
int res;
|
||
|
|
||
|
// Phase 1: Portal discovery
|
||
|
res = b3DiscoverPortal(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, hasSepAxis, &portal);
|
||
|
|
||
|
//sepAxis[pairIndex] = *pdir;//or -dir?
|
||
|
|
||
|
switch (res)
|
||
|
{
|
||
|
case 0:
|
||
|
{
|
||
|
// Phase 2: Portal refinement
|
||
|
|
||
|
res = b3RefinePortal(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &portal);
|
||
|
if (res < 0)
|
||
|
return -1;
|
||
|
|
||
|
// Phase 3. Penetration info
|
||
|
b3FindPenetr(pairIndex, bodyIndexA, bodyIndexB, cpuBodyBuf, cpuConvexData, cpuCollidables, cpuVertices, sepAxis, &portal, depthOut, dirOut, posOut);
|
||
|
hasSepAxis[pairIndex] = 1;
|
||
|
sepAxis[pairIndex] = -*dirOut;
|
||
|
break;
|
||
|
}
|
||
|
case 1:
|
||
|
{
|
||
|
// Touching contact on portal's v1.
|
||
|
b3FindPenetrTouch(&portal, depthOut, dirOut, posOut);
|
||
|
break;
|
||
|
}
|
||
|
case 2:
|
||
|
{
|
||
|
b3FindPenetrSegment(&portal, depthOut, dirOut, posOut);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
hasSepAxis[pairIndex] = 0;
|
||
|
//if (res < 0)
|
||
|
//{
|
||
|
// Origin isn't inside portal - no collision.
|
||
|
return -1;
|
||
|
//}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
return 0;
|
||
|
};
|
||
|
|
||
|
#endif //B3_MPR_PENETRATION_H
|