mirror of
https://github.com/Relintai/pandemonium_engine.git
synced 2025-01-01 00:27:12 +01:00
2159 lines
56 KiB
C++
2159 lines
56 KiB
C++
|
/*************************************************************************
|
||
|
* *
|
||
|
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
|
||
|
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
|
||
|
* *
|
||
|
* This library is free software; you can redistribute it and/or *
|
||
|
* modify it under the terms of EITHER: *
|
||
|
* (1) The GNU Lesser General Public License as published by the Free *
|
||
|
* Software Foundation; either version 2.1 of the License, or (at *
|
||
|
* your option) any later version. The text of the GNU Lesser *
|
||
|
* General Public License is included with this library in the *
|
||
|
* file LICENSE.TXT. *
|
||
|
* (2) The BSD-style license that is included with this library in *
|
||
|
* the file LICENSE-BSD.TXT. *
|
||
|
* *
|
||
|
* This library is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
||
|
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
||
|
* *
|
||
|
*************************************************************************/
|
||
|
|
||
|
/*
|
||
|
|
||
|
|
||
|
THE ALGORITHM
|
||
|
-------------
|
||
|
|
||
|
solve A*x = b+w, with x and w subject to certain LCP conditions.
|
||
|
each x(i),w(i) must lie on one of the three line segments in the following
|
||
|
diagram. each line segment corresponds to one index set :
|
||
|
|
||
|
w(i)
|
||
|
/|\ | :
|
||
|
| | :
|
||
|
| |i in N :
|
||
|
w>0 | |state[i]=0 :
|
||
|
| | :
|
||
|
| | : i in C
|
||
|
w=0 + +-----------------------+
|
||
|
| : |
|
||
|
| : |
|
||
|
w<0 | : |i in N
|
||
|
| : |state[i]=1
|
||
|
| : |
|
||
|
| : |
|
||
|
+-------|-----------|-----------|----------> x(i)
|
||
|
lo 0 hi
|
||
|
|
||
|
the Dantzig algorithm proceeds as follows:
|
||
|
for i=1:n
|
||
|
* if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
|
||
|
negative towards the line. as this is done, the other (x(j),w(j))
|
||
|
for j<i are constrained to be on the line. if any (x,w) reaches the
|
||
|
end of a line segment then it is switched between index sets.
|
||
|
* i is added to the appropriate index set depending on what line segment
|
||
|
it hits.
|
||
|
|
||
|
we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
|
||
|
simpler, because the starting point for x(i),w(i) is always on the dotted
|
||
|
line x=0 and x will only ever increase in one direction, so it can only hit
|
||
|
two out of the three line segments.
|
||
|
|
||
|
|
||
|
NOTES
|
||
|
-----
|
||
|
|
||
|
this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
|
||
|
the implementation is split into an LCP problem object (btLCP) and an LCP
|
||
|
driver function. most optimization occurs in the btLCP object.
|
||
|
|
||
|
a naive implementation of the algorithm requires either a lot of data motion
|
||
|
or a lot of permutation-array lookup, because we are constantly re-ordering
|
||
|
rows and columns. to avoid this and make a more optimized algorithm, a
|
||
|
non-trivial data structure is used to represent the matrix A (this is
|
||
|
implemented in the fast version of the btLCP object).
|
||
|
|
||
|
during execution of this algorithm, some indexes in A are clamped (set C),
|
||
|
some are non-clamped (set N), and some are "don't care" (where x=0).
|
||
|
A,x,b,w (and other problem vectors) are permuted such that the clamped
|
||
|
indexes are first, the unclamped indexes are next, and the don't-care
|
||
|
indexes are last. this permutation is recorded in the array `p'.
|
||
|
initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
|
||
|
the corresponding elements of p are swapped.
|
||
|
|
||
|
because the C and N elements are grouped together in the rows of A, we can do
|
||
|
lots of work with a fast dot product function. if A,x,etc were not permuted
|
||
|
and we only had a permutation array, then those dot products would be much
|
||
|
slower as we would have a permutation array lookup in some inner loops.
|
||
|
|
||
|
A is accessed through an array of row pointers, so that element (i,j) of the
|
||
|
permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
|
||
|
we still have to actually move the data.
|
||
|
|
||
|
during execution of this algorithm we maintain an L*D*L' factorization of
|
||
|
the clamped submatrix of A (call it `AC') which is the top left nC*nC
|
||
|
submatrix of A. there are two ways we could arrange the rows/columns in AC.
|
||
|
|
||
|
(1) AC is always permuted such that L*D*L' = AC. this causes a problem
|
||
|
when a row/column is removed from C, because then all the rows/columns of A
|
||
|
between the deleted index and the end of C need to be rotated downward.
|
||
|
this results in a lot of data motion and slows things down.
|
||
|
(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
|
||
|
itself a permutation of the underlying A). this is what we do - the
|
||
|
permutation is recorded in the vector C. call this permutation A[C,C].
|
||
|
when a row/column is removed from C, all we have to do is swap two
|
||
|
rows/columns and manipulate C.
|
||
|
|
||
|
*/
|
||
|
|
||
|
#include "btDantzigLCP.h"
|
||
|
|
||
|
#include <string.h> //memcpy
|
||
|
|
||
|
bool s_error = false;
|
||
|
|
||
|
//***************************************************************************
|
||
|
// code generation parameters
|
||
|
|
||
|
#define btLCP_FAST // use fast btLCP object
|
||
|
|
||
|
// option 1 : matrix row pointers (less data copying)
|
||
|
#define BTROWPTRS
|
||
|
#define BTATYPE btScalar **
|
||
|
#define BTAROW(i) (m_A[i])
|
||
|
|
||
|
// option 2 : no matrix row pointers (slightly faster inner loops)
|
||
|
//#define NOROWPTRS
|
||
|
//#define BTATYPE btScalar *
|
||
|
//#define BTAROW(i) (m_A+(i)*m_nskip)
|
||
|
|
||
|
#define BTNUB_OPTIMIZATIONS
|
||
|
|
||
|
/* solve L*X=B, with B containing 1 right hand sides.
|
||
|
* L is an n*n lower triangular matrix with ones on the diagonal.
|
||
|
* L is stored by rows and its leading dimension is lskip.
|
||
|
* B is an n*1 matrix that contains the right hand sides.
|
||
|
* B is stored by columns and its leading dimension is also lskip.
|
||
|
* B is overwritten with X.
|
||
|
* this processes blocks of 2*2.
|
||
|
* if this is in the factorizer source file, n must be a multiple of 2.
|
||
|
*/
|
||
|
|
||
|
static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1)
|
||
|
{
|
||
|
/* declare variables - Z matrix, p and q vectors, etc */
|
||
|
btScalar Z11, m11, Z21, m21, p1, q1, p2, *ex;
|
||
|
const btScalar *ell;
|
||
|
int i, j;
|
||
|
/* compute all 2 x 1 blocks of X */
|
||
|
for (i = 0; i < n; i += 2)
|
||
|
{
|
||
|
/* compute all 2 x 1 block of X, from rows i..i+2-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
Z21 = 0;
|
||
|
ell = L + i * lskip1;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 2; j >= 0; j -= 2)
|
||
|
{
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
m11 = p1 * q1;
|
||
|
p2 = ell[lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[1];
|
||
|
q1 = ex[1];
|
||
|
m11 = p1 * q1;
|
||
|
p2 = ell[1 + lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 2;
|
||
|
ex += 2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 2;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
m11 = p1 * q1;
|
||
|
p2 = ell[lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 1;
|
||
|
ex += 1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
p1 = ell[lskip1];
|
||
|
Z21 = ex[1] - Z21 - p1 * Z11;
|
||
|
ex[1] = Z21;
|
||
|
/* end of outer loop */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* solve L*X=B, with B containing 2 right hand sides.
|
||
|
* L is an n*n lower triangular matrix with ones on the diagonal.
|
||
|
* L is stored by rows and its leading dimension is lskip.
|
||
|
* B is an n*2 matrix that contains the right hand sides.
|
||
|
* B is stored by columns and its leading dimension is also lskip.
|
||
|
* B is overwritten with X.
|
||
|
* this processes blocks of 2*2.
|
||
|
* if this is in the factorizer source file, n must be a multiple of 2.
|
||
|
*/
|
||
|
|
||
|
static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1)
|
||
|
{
|
||
|
/* declare variables - Z matrix, p and q vectors, etc */
|
||
|
btScalar Z11, m11, Z12, m12, Z21, m21, Z22, m22, p1, q1, p2, q2, *ex;
|
||
|
const btScalar *ell;
|
||
|
int i, j;
|
||
|
/* compute all 2 x 2 blocks of X */
|
||
|
for (i = 0; i < n; i += 2)
|
||
|
{
|
||
|
/* compute all 2 x 2 block of X, from rows i..i+2-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
Z12 = 0;
|
||
|
Z21 = 0;
|
||
|
Z22 = 0;
|
||
|
ell = L + i * lskip1;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 2; j >= 0; j -= 2)
|
||
|
{
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
m11 = p1 * q1;
|
||
|
q2 = ex[lskip1];
|
||
|
m12 = p1 * q2;
|
||
|
p2 = ell[lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z12 += m12;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[1];
|
||
|
q1 = ex[1];
|
||
|
m11 = p1 * q1;
|
||
|
q2 = ex[1 + lskip1];
|
||
|
m12 = p1 * q2;
|
||
|
p2 = ell[1 + lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
/* advance pointers */
|
||
|
ell += 2;
|
||
|
ex += 2;
|
||
|
Z11 += m11;
|
||
|
Z12 += m12;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 2;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
m11 = p1 * q1;
|
||
|
q2 = ex[lskip1];
|
||
|
m12 = p1 * q2;
|
||
|
p2 = ell[lskip1];
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
/* advance pointers */
|
||
|
ell += 1;
|
||
|
ex += 1;
|
||
|
Z11 += m11;
|
||
|
Z12 += m12;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
Z12 = ex[lskip1] - Z12;
|
||
|
ex[lskip1] = Z12;
|
||
|
p1 = ell[lskip1];
|
||
|
Z21 = ex[1] - Z21 - p1 * Z11;
|
||
|
ex[1] = Z21;
|
||
|
Z22 = ex[1 + lskip1] - Z22 - p1 * Z12;
|
||
|
ex[1 + lskip1] = Z22;
|
||
|
/* end of outer loop */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1)
|
||
|
{
|
||
|
int i, j;
|
||
|
btScalar sum, *ell, *dee, dd, p1, p2, q1, q2, Z11, m11, Z21, m21, Z22, m22;
|
||
|
if (n < 1) return;
|
||
|
|
||
|
for (i = 0; i <= n - 2; i += 2)
|
||
|
{
|
||
|
/* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
|
||
|
btSolveL1_2(A, A + i * nskip1, i, nskip1);
|
||
|
/* scale the elements in a 2 x i block at A(i,0), and also */
|
||
|
/* compute Z = the outer product matrix that we'll need. */
|
||
|
Z11 = 0;
|
||
|
Z21 = 0;
|
||
|
Z22 = 0;
|
||
|
ell = A + i * nskip1;
|
||
|
dee = d;
|
||
|
for (j = i - 6; j >= 0; j -= 6)
|
||
|
{
|
||
|
p1 = ell[0];
|
||
|
p2 = ell[nskip1];
|
||
|
dd = dee[0];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[0] = q1;
|
||
|
ell[nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
p1 = ell[1];
|
||
|
p2 = ell[1 + nskip1];
|
||
|
dd = dee[1];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[1] = q1;
|
||
|
ell[1 + nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
p1 = ell[2];
|
||
|
p2 = ell[2 + nskip1];
|
||
|
dd = dee[2];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[2] = q1;
|
||
|
ell[2 + nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
p1 = ell[3];
|
||
|
p2 = ell[3 + nskip1];
|
||
|
dd = dee[3];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[3] = q1;
|
||
|
ell[3 + nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
p1 = ell[4];
|
||
|
p2 = ell[4 + nskip1];
|
||
|
dd = dee[4];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[4] = q1;
|
||
|
ell[4 + nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
p1 = ell[5];
|
||
|
p2 = ell[5 + nskip1];
|
||
|
dd = dee[5];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[5] = q1;
|
||
|
ell[5 + nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
ell += 6;
|
||
|
dee += 6;
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 6;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
p1 = ell[0];
|
||
|
p2 = ell[nskip1];
|
||
|
dd = dee[0];
|
||
|
q1 = p1 * dd;
|
||
|
q2 = p2 * dd;
|
||
|
ell[0] = q1;
|
||
|
ell[nskip1] = q2;
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m22 = p2 * q2;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z22 += m22;
|
||
|
ell++;
|
||
|
dee++;
|
||
|
}
|
||
|
/* solve for diagonal 2 x 2 block at A(i,i) */
|
||
|
Z11 = ell[0] - Z11;
|
||
|
Z21 = ell[nskip1] - Z21;
|
||
|
Z22 = ell[1 + nskip1] - Z22;
|
||
|
dee = d + i;
|
||
|
/* factorize 2 x 2 block Z,dee */
|
||
|
/* factorize row 1 */
|
||
|
dee[0] = btRecip(Z11);
|
||
|
/* factorize row 2 */
|
||
|
sum = 0;
|
||
|
q1 = Z21;
|
||
|
q2 = q1 * dee[0];
|
||
|
Z21 = q2;
|
||
|
sum += q1 * q2;
|
||
|
dee[1] = btRecip(Z22 - sum);
|
||
|
/* done factorizing 2 x 2 block */
|
||
|
ell[nskip1] = Z21;
|
||
|
}
|
||
|
/* compute the (less than 2) rows at the bottom */
|
||
|
switch (n - i)
|
||
|
{
|
||
|
case 0:
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
btSolveL1_1(A, A + i * nskip1, i, nskip1);
|
||
|
/* scale the elements in a 1 x i block at A(i,0), and also */
|
||
|
/* compute Z = the outer product matrix that we'll need. */
|
||
|
Z11 = 0;
|
||
|
ell = A + i * nskip1;
|
||
|
dee = d;
|
||
|
for (j = i - 6; j >= 0; j -= 6)
|
||
|
{
|
||
|
p1 = ell[0];
|
||
|
dd = dee[0];
|
||
|
q1 = p1 * dd;
|
||
|
ell[0] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
p1 = ell[1];
|
||
|
dd = dee[1];
|
||
|
q1 = p1 * dd;
|
||
|
ell[1] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
p1 = ell[2];
|
||
|
dd = dee[2];
|
||
|
q1 = p1 * dd;
|
||
|
ell[2] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
p1 = ell[3];
|
||
|
dd = dee[3];
|
||
|
q1 = p1 * dd;
|
||
|
ell[3] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
p1 = ell[4];
|
||
|
dd = dee[4];
|
||
|
q1 = p1 * dd;
|
||
|
ell[4] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
p1 = ell[5];
|
||
|
dd = dee[5];
|
||
|
q1 = p1 * dd;
|
||
|
ell[5] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
ell += 6;
|
||
|
dee += 6;
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 6;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
p1 = ell[0];
|
||
|
dd = dee[0];
|
||
|
q1 = p1 * dd;
|
||
|
ell[0] = q1;
|
||
|
m11 = p1 * q1;
|
||
|
Z11 += m11;
|
||
|
ell++;
|
||
|
dee++;
|
||
|
}
|
||
|
/* solve for diagonal 1 x 1 block at A(i,i) */
|
||
|
Z11 = ell[0] - Z11;
|
||
|
dee = d + i;
|
||
|
/* factorize 1 x 1 block Z,dee */
|
||
|
/* factorize row 1 */
|
||
|
dee[0] = btRecip(Z11);
|
||
|
/* done factorizing 1 x 1 block */
|
||
|
break;
|
||
|
|
||
|
//default: *((char*)0)=0; /* this should never happen! */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* solve L*X=B, with B containing 1 right hand sides.
|
||
|
* L is an n*n lower triangular matrix with ones on the diagonal.
|
||
|
* L is stored by rows and its leading dimension is lskip.
|
||
|
* B is an n*1 matrix that contains the right hand sides.
|
||
|
* B is stored by columns and its leading dimension is also lskip.
|
||
|
* B is overwritten with X.
|
||
|
* this processes blocks of 4*4.
|
||
|
* if this is in the factorizer source file, n must be a multiple of 4.
|
||
|
*/
|
||
|
|
||
|
void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1)
|
||
|
{
|
||
|
/* declare variables - Z matrix, p and q vectors, etc */
|
||
|
btScalar Z11, Z21, Z31, Z41, p1, q1, p2, p3, p4, *ex;
|
||
|
const btScalar *ell;
|
||
|
int lskip2, lskip3, i, j;
|
||
|
/* compute lskip values */
|
||
|
lskip2 = 2 * lskip1;
|
||
|
lskip3 = 3 * lskip1;
|
||
|
/* compute all 4 x 1 blocks of X */
|
||
|
for (i = 0; i <= n - 4; i += 4)
|
||
|
{
|
||
|
/* compute all 4 x 1 block of X, from rows i..i+4-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
Z21 = 0;
|
||
|
Z31 = 0;
|
||
|
Z41 = 0;
|
||
|
ell = L + i * lskip1;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 12; j >= 0; j -= 12)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
p2 = ell[lskip1];
|
||
|
p3 = ell[lskip2];
|
||
|
p4 = ell[lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[1];
|
||
|
q1 = ex[1];
|
||
|
p2 = ell[1 + lskip1];
|
||
|
p3 = ell[1 + lskip2];
|
||
|
p4 = ell[1 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[2];
|
||
|
q1 = ex[2];
|
||
|
p2 = ell[2 + lskip1];
|
||
|
p3 = ell[2 + lskip2];
|
||
|
p4 = ell[2 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[3];
|
||
|
q1 = ex[3];
|
||
|
p2 = ell[3 + lskip1];
|
||
|
p3 = ell[3 + lskip2];
|
||
|
p4 = ell[3 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[4];
|
||
|
q1 = ex[4];
|
||
|
p2 = ell[4 + lskip1];
|
||
|
p3 = ell[4 + lskip2];
|
||
|
p4 = ell[4 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[5];
|
||
|
q1 = ex[5];
|
||
|
p2 = ell[5 + lskip1];
|
||
|
p3 = ell[5 + lskip2];
|
||
|
p4 = ell[5 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[6];
|
||
|
q1 = ex[6];
|
||
|
p2 = ell[6 + lskip1];
|
||
|
p3 = ell[6 + lskip2];
|
||
|
p4 = ell[6 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[7];
|
||
|
q1 = ex[7];
|
||
|
p2 = ell[7 + lskip1];
|
||
|
p3 = ell[7 + lskip2];
|
||
|
p4 = ell[7 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[8];
|
||
|
q1 = ex[8];
|
||
|
p2 = ell[8 + lskip1];
|
||
|
p3 = ell[8 + lskip2];
|
||
|
p4 = ell[8 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[9];
|
||
|
q1 = ex[9];
|
||
|
p2 = ell[9 + lskip1];
|
||
|
p3 = ell[9 + lskip2];
|
||
|
p4 = ell[9 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[10];
|
||
|
q1 = ex[10];
|
||
|
p2 = ell[10 + lskip1];
|
||
|
p3 = ell[10 + lskip2];
|
||
|
p4 = ell[10 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[11];
|
||
|
q1 = ex[11];
|
||
|
p2 = ell[11 + lskip1];
|
||
|
p3 = ell[11 + lskip2];
|
||
|
p4 = ell[11 + lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 12;
|
||
|
ex += 12;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 12;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
p2 = ell[lskip1];
|
||
|
p3 = ell[lskip2];
|
||
|
p4 = ell[lskip3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
Z21 += p2 * q1;
|
||
|
Z31 += p3 * q1;
|
||
|
Z41 += p4 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 1;
|
||
|
ex += 1;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
p1 = ell[lskip1];
|
||
|
Z21 = ex[1] - Z21 - p1 * Z11;
|
||
|
ex[1] = Z21;
|
||
|
p1 = ell[lskip2];
|
||
|
p2 = ell[1 + lskip2];
|
||
|
Z31 = ex[2] - Z31 - p1 * Z11 - p2 * Z21;
|
||
|
ex[2] = Z31;
|
||
|
p1 = ell[lskip3];
|
||
|
p2 = ell[1 + lskip3];
|
||
|
p3 = ell[2 + lskip3];
|
||
|
Z41 = ex[3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
|
||
|
ex[3] = Z41;
|
||
|
/* end of outer loop */
|
||
|
}
|
||
|
/* compute rows at end that are not a multiple of block size */
|
||
|
for (; i < n; i++)
|
||
|
{
|
||
|
/* compute all 1 x 1 block of X, from rows i..i+1-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
ell = L + i * lskip1;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 12; j >= 0; j -= 12)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[1];
|
||
|
q1 = ex[1];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[2];
|
||
|
q1 = ex[2];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[3];
|
||
|
q1 = ex[3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[4];
|
||
|
q1 = ex[4];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[5];
|
||
|
q1 = ex[5];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[6];
|
||
|
q1 = ex[6];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[7];
|
||
|
q1 = ex[7];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[8];
|
||
|
q1 = ex[8];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[9];
|
||
|
q1 = ex[9];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[10];
|
||
|
q1 = ex[10];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[11];
|
||
|
q1 = ex[11];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 12;
|
||
|
ex += 12;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 12;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
Z11 += p1 * q1;
|
||
|
/* advance pointers */
|
||
|
ell += 1;
|
||
|
ex += 1;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* solve L^T * x=b, with b containing 1 right hand side.
|
||
|
* L is an n*n lower triangular matrix with ones on the diagonal.
|
||
|
* L is stored by rows and its leading dimension is lskip.
|
||
|
* b is an n*1 matrix that contains the right hand side.
|
||
|
* b is overwritten with x.
|
||
|
* this processes blocks of 4.
|
||
|
*/
|
||
|
|
||
|
void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1)
|
||
|
{
|
||
|
/* declare variables - Z matrix, p and q vectors, etc */
|
||
|
btScalar Z11, m11, Z21, m21, Z31, m31, Z41, m41, p1, q1, p2, p3, p4, *ex;
|
||
|
const btScalar *ell;
|
||
|
int lskip2, i, j;
|
||
|
// int lskip3;
|
||
|
/* special handling for L and B because we're solving L1 *transpose* */
|
||
|
L = L + (n - 1) * (lskip1 + 1);
|
||
|
B = B + n - 1;
|
||
|
lskip1 = -lskip1;
|
||
|
/* compute lskip values */
|
||
|
lskip2 = 2 * lskip1;
|
||
|
//lskip3 = 3*lskip1;
|
||
|
/* compute all 4 x 1 blocks of X */
|
||
|
for (i = 0; i <= n - 4; i += 4)
|
||
|
{
|
||
|
/* compute all 4 x 1 block of X, from rows i..i+4-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
Z21 = 0;
|
||
|
Z31 = 0;
|
||
|
Z41 = 0;
|
||
|
ell = L - i;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 4; j >= 0; j -= 4)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
p2 = ell[-1];
|
||
|
p3 = ell[-2];
|
||
|
p4 = ell[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m31 = p3 * q1;
|
||
|
m41 = p4 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z31 += m31;
|
||
|
Z41 += m41;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-1];
|
||
|
p2 = ell[-1];
|
||
|
p3 = ell[-2];
|
||
|
p4 = ell[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m31 = p3 * q1;
|
||
|
m41 = p4 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z31 += m31;
|
||
|
Z41 += m41;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-2];
|
||
|
p2 = ell[-1];
|
||
|
p3 = ell[-2];
|
||
|
p4 = ell[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m31 = p3 * q1;
|
||
|
m41 = p4 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z31 += m31;
|
||
|
Z41 += m41;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-3];
|
||
|
p2 = ell[-1];
|
||
|
p3 = ell[-2];
|
||
|
p4 = ell[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m31 = p3 * q1;
|
||
|
m41 = p4 * q1;
|
||
|
ell += lskip1;
|
||
|
ex -= 4;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z31 += m31;
|
||
|
Z41 += m41;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 4;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
p2 = ell[-1];
|
||
|
p3 = ell[-2];
|
||
|
p4 = ell[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
m21 = p2 * q1;
|
||
|
m31 = p3 * q1;
|
||
|
m41 = p4 * q1;
|
||
|
ell += lskip1;
|
||
|
ex -= 1;
|
||
|
Z11 += m11;
|
||
|
Z21 += m21;
|
||
|
Z31 += m31;
|
||
|
Z41 += m41;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
p1 = ell[-1];
|
||
|
Z21 = ex[-1] - Z21 - p1 * Z11;
|
||
|
ex[-1] = Z21;
|
||
|
p1 = ell[-2];
|
||
|
p2 = ell[-2 + lskip1];
|
||
|
Z31 = ex[-2] - Z31 - p1 * Z11 - p2 * Z21;
|
||
|
ex[-2] = Z31;
|
||
|
p1 = ell[-3];
|
||
|
p2 = ell[-3 + lskip1];
|
||
|
p3 = ell[-3 + lskip2];
|
||
|
Z41 = ex[-3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
|
||
|
ex[-3] = Z41;
|
||
|
/* end of outer loop */
|
||
|
}
|
||
|
/* compute rows at end that are not a multiple of block size */
|
||
|
for (; i < n; i++)
|
||
|
{
|
||
|
/* compute all 1 x 1 block of X, from rows i..i+1-1 */
|
||
|
/* set the Z matrix to 0 */
|
||
|
Z11 = 0;
|
||
|
ell = L - i;
|
||
|
ex = B;
|
||
|
/* the inner loop that computes outer products and adds them to Z */
|
||
|
for (j = i - 4; j >= 0; j -= 4)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-1];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-2];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
ell += lskip1;
|
||
|
Z11 += m11;
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[-3];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
ell += lskip1;
|
||
|
ex -= 4;
|
||
|
Z11 += m11;
|
||
|
/* end of inner loop */
|
||
|
}
|
||
|
/* compute left-over iterations */
|
||
|
j += 4;
|
||
|
for (; j > 0; j--)
|
||
|
{
|
||
|
/* load p and q values */
|
||
|
p1 = ell[0];
|
||
|
q1 = ex[0];
|
||
|
/* compute outer product and add it to the Z matrix */
|
||
|
m11 = p1 * q1;
|
||
|
ell += lskip1;
|
||
|
ex -= 1;
|
||
|
Z11 += m11;
|
||
|
}
|
||
|
/* finish computing the X(i) block */
|
||
|
Z11 = ex[0] - Z11;
|
||
|
ex[0] = Z11;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btVectorScale(btScalar *a, const btScalar *d, int n)
|
||
|
{
|
||
|
btAssert(a && d && n >= 0);
|
||
|
for (int i = 0; i < n; i++)
|
||
|
{
|
||
|
a[i] *= d[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
|
||
|
{
|
||
|
btAssert(L && d && b && n > 0 && nskip >= n);
|
||
|
btSolveL1(L, b, n, nskip);
|
||
|
btVectorScale(b, d, n);
|
||
|
btSolveL1T(L, b, n, nskip);
|
||
|
}
|
||
|
|
||
|
//***************************************************************************
|
||
|
|
||
|
// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
|
||
|
// A is nskip. this only references and swaps the lower triangle.
|
||
|
// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
|
||
|
// rows will be swapped by exchanging row pointers. otherwise the data will
|
||
|
// be copied.
|
||
|
|
||
|
static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip,
|
||
|
int do_fast_row_swaps)
|
||
|
{
|
||
|
btAssert(A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
|
||
|
nskip >= n && i1 < i2);
|
||
|
|
||
|
#ifdef BTROWPTRS
|
||
|
btScalar *A_i1 = A[i1];
|
||
|
btScalar *A_i2 = A[i2];
|
||
|
for (int i = i1 + 1; i < i2; ++i)
|
||
|
{
|
||
|
btScalar *A_i_i1 = A[i] + i1;
|
||
|
A_i1[i] = *A_i_i1;
|
||
|
*A_i_i1 = A_i2[i];
|
||
|
}
|
||
|
A_i1[i2] = A_i1[i1];
|
||
|
A_i1[i1] = A_i2[i1];
|
||
|
A_i2[i1] = A_i2[i2];
|
||
|
// swap rows, by swapping row pointers
|
||
|
if (do_fast_row_swaps)
|
||
|
{
|
||
|
A[i1] = A_i2;
|
||
|
A[i2] = A_i1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Only swap till i2 column to match A plain storage variant.
|
||
|
for (int k = 0; k <= i2; ++k)
|
||
|
{
|
||
|
btScalar tmp = A_i1[k];
|
||
|
A_i1[k] = A_i2[k];
|
||
|
A_i2[k] = tmp;
|
||
|
}
|
||
|
}
|
||
|
// swap columns the hard way
|
||
|
for (int j = i2 + 1; j < n; ++j)
|
||
|
{
|
||
|
btScalar *A_j = A[j];
|
||
|
btScalar tmp = A_j[i1];
|
||
|
A_j[i1] = A_j[i2];
|
||
|
A_j[i2] = tmp;
|
||
|
}
|
||
|
#else
|
||
|
btScalar *A_i1 = A + i1 * nskip;
|
||
|
btScalar *A_i2 = A + i2 * nskip;
|
||
|
for (int k = 0; k < i1; ++k)
|
||
|
{
|
||
|
btScalar tmp = A_i1[k];
|
||
|
A_i1[k] = A_i2[k];
|
||
|
A_i2[k] = tmp;
|
||
|
}
|
||
|
btScalar *A_i = A_i1 + nskip;
|
||
|
for (int i = i1 + 1; i < i2; A_i += nskip, ++i)
|
||
|
{
|
||
|
btScalar tmp = A_i2[i];
|
||
|
A_i2[i] = A_i[i1];
|
||
|
A_i[i1] = tmp;
|
||
|
}
|
||
|
{
|
||
|
btScalar tmp = A_i1[i1];
|
||
|
A_i1[i1] = A_i2[i2];
|
||
|
A_i2[i2] = tmp;
|
||
|
}
|
||
|
btScalar *A_j = A_i2 + nskip;
|
||
|
for (int j = i2 + 1; j < n; A_j += nskip, ++j)
|
||
|
{
|
||
|
btScalar tmp = A_j[i1];
|
||
|
A_j[i1] = A_j[i2];
|
||
|
A_j[i2] = tmp;
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
// swap two indexes in the n*n LCP problem. i1 must be <= i2.
|
||
|
|
||
|
static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
|
||
|
btScalar *hi, int *p, bool *state, int *findex,
|
||
|
int n, int i1, int i2, int nskip,
|
||
|
int do_fast_row_swaps)
|
||
|
{
|
||
|
btScalar tmpr;
|
||
|
int tmpi;
|
||
|
bool tmpb;
|
||
|
btAssert(n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
|
||
|
if (i1 == i2) return;
|
||
|
|
||
|
btSwapRowsAndCols(A, n, i1, i2, nskip, do_fast_row_swaps);
|
||
|
|
||
|
tmpr = x[i1];
|
||
|
x[i1] = x[i2];
|
||
|
x[i2] = tmpr;
|
||
|
|
||
|
tmpr = b[i1];
|
||
|
b[i1] = b[i2];
|
||
|
b[i2] = tmpr;
|
||
|
|
||
|
tmpr = w[i1];
|
||
|
w[i1] = w[i2];
|
||
|
w[i2] = tmpr;
|
||
|
|
||
|
tmpr = lo[i1];
|
||
|
lo[i1] = lo[i2];
|
||
|
lo[i2] = tmpr;
|
||
|
|
||
|
tmpr = hi[i1];
|
||
|
hi[i1] = hi[i2];
|
||
|
hi[i2] = tmpr;
|
||
|
|
||
|
tmpi = p[i1];
|
||
|
p[i1] = p[i2];
|
||
|
p[i2] = tmpi;
|
||
|
|
||
|
tmpb = state[i1];
|
||
|
state[i1] = state[i2];
|
||
|
state[i2] = tmpb;
|
||
|
|
||
|
if (findex)
|
||
|
{
|
||
|
tmpi = findex[i1];
|
||
|
findex[i1] = findex[i2];
|
||
|
findex[i2] = tmpi;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//***************************************************************************
|
||
|
// btLCP manipulator object. this represents an n*n LCP problem.
|
||
|
//
|
||
|
// two index sets C and N are kept. each set holds a subset of
|
||
|
// the variable indexes 0..n-1. an index can only be in one set.
|
||
|
// initially both sets are empty.
|
||
|
//
|
||
|
// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
|
||
|
|
||
|
//***************************************************************************
|
||
|
// fast implementation of btLCP. see the above definition of btLCP for
|
||
|
// interface comments.
|
||
|
//
|
||
|
// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
|
||
|
// permuted as the other vectors/matrices are permuted.
|
||
|
//
|
||
|
// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
|
||
|
// contiguous indexes. the don't-care indexes follow N.
|
||
|
//
|
||
|
// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
|
||
|
// added or removed from the set C the factorization is updated.
|
||
|
// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
|
||
|
// the leading dimension of the matrix L is always `nskip'.
|
||
|
//
|
||
|
// at the start there may be other indexes that are unbounded but are not
|
||
|
// included in `nub'. btLCP will permute the matrix so that absolutely all
|
||
|
// unbounded vectors are at the start. thus there may be some initial
|
||
|
// permutation.
|
||
|
//
|
||
|
// the algorithms here assume certain patterns, particularly with respect to
|
||
|
// index transfer.
|
||
|
|
||
|
#ifdef btLCP_FAST
|
||
|
|
||
|
struct btLCP
|
||
|
{
|
||
|
const int m_n;
|
||
|
const int m_nskip;
|
||
|
int m_nub;
|
||
|
int m_nC, m_nN; // size of each index set
|
||
|
BTATYPE const m_A; // A rows
|
||
|
btScalar *const m_x, *const m_b, *const m_w, *const m_lo, *const m_hi; // permuted LCP problem data
|
||
|
btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
|
||
|
btScalar *const m_Dell, *const m_ell, *const m_tmp;
|
||
|
bool *const m_state;
|
||
|
int *const m_findex, *const m_p, *const m_C;
|
||
|
|
||
|
btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
|
||
|
btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
|
||
|
btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
|
||
|
bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
|
||
|
int getNub() const { return m_nub; }
|
||
|
void transfer_i_to_C(int i);
|
||
|
void transfer_i_to_N(int i) { m_nN++; } // because we can assume C and N span 1:i-1
|
||
|
void transfer_i_from_N_to_C(int i);
|
||
|
void transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch);
|
||
|
int numC() const { return m_nC; }
|
||
|
int numN() const { return m_nN; }
|
||
|
int indexC(int i) const { return i; }
|
||
|
int indexN(int i) const { return i + m_nC; }
|
||
|
btScalar Aii(int i) const { return BTAROW(i)[i]; }
|
||
|
btScalar AiC_times_qC(int i, btScalar *q) const { return btLargeDot(BTAROW(i), q, m_nC); }
|
||
|
btScalar AiN_times_qN(int i, btScalar *q) const { return btLargeDot(BTAROW(i) + m_nC, q + m_nC, m_nN); }
|
||
|
void pN_equals_ANC_times_qC(btScalar *p, btScalar *q);
|
||
|
void pN_plusequals_ANi(btScalar *p, int i, int sign = 1);
|
||
|
void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q);
|
||
|
void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q);
|
||
|
void solve1(btScalar *a, int i, int dir = 1, int only_transfer = 0);
|
||
|
void unpermute();
|
||
|
};
|
||
|
|
||
|
btLCP::btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
|
||
|
btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
|
||
|
btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
|
||
|
bool *_state, int *_findex, int *p, int *c, btScalar **Arows) : m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
|
||
|
#ifdef BTROWPTRS
|
||
|
m_A(Arows),
|
||
|
#else
|
||
|
m_A(_Adata),
|
||
|
#endif
|
||
|
m_x(_x),
|
||
|
m_b(_b),
|
||
|
m_w(_w),
|
||
|
m_lo(_lo),
|
||
|
m_hi(_hi),
|
||
|
m_L(l),
|
||
|
m_d(_d),
|
||
|
m_Dell(_Dell),
|
||
|
m_ell(_ell),
|
||
|
m_tmp(_tmp),
|
||
|
m_state(_state),
|
||
|
m_findex(_findex),
|
||
|
m_p(p),
|
||
|
m_C(c)
|
||
|
{
|
||
|
{
|
||
|
btSetZero(m_x, m_n);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
#ifdef BTROWPTRS
|
||
|
// make matrix row pointers
|
||
|
btScalar *aptr = _Adata;
|
||
|
BTATYPE A = m_A;
|
||
|
const int n = m_n, nskip = m_nskip;
|
||
|
for (int k = 0; k < n; aptr += nskip, ++k) A[k] = aptr;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
{
|
||
|
int *p = m_p;
|
||
|
const int n = m_n;
|
||
|
for (int k = 0; k < n; ++k) p[k] = k; // initially unpermuted
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
// for testing, we can do some random swaps in the area i > nub
|
||
|
{
|
||
|
const int n = m_n;
|
||
|
const int nub = m_nub;
|
||
|
if (nub < n) {
|
||
|
for (int k=0; k<100; k++) {
|
||
|
int i1,i2;
|
||
|
do {
|
||
|
i1 = dRandInt(n-nub)+nub;
|
||
|
i2 = dRandInt(n-nub)+nub;
|
||
|
}
|
||
|
while (i1 > i2);
|
||
|
//printf ("--> %d %d\n",i1,i2);
|
||
|
btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
// permute the problem so that *all* the unbounded variables are at the
|
||
|
// start, i.e. look for unbounded variables not included in `nub'. we can
|
||
|
// potentially push up `nub' this way and get a bigger initial factorization.
|
||
|
// note that when we swap rows/cols here we must not just swap row pointers,
|
||
|
// as the initial factorization relies on the data being all in one chunk.
|
||
|
// variables that have findex >= 0 are *not* considered to be unbounded even
|
||
|
// if lo=-inf and hi=inf - this is because these limits may change during the
|
||
|
// solution process.
|
||
|
|
||
|
{
|
||
|
int *findex = m_findex;
|
||
|
btScalar *lo = m_lo, *hi = m_hi;
|
||
|
const int n = m_n;
|
||
|
for (int k = m_nub; k < n; ++k)
|
||
|
{
|
||
|
if (findex && findex[k] >= 0) continue;
|
||
|
if (lo[k] == -BT_INFINITY && hi[k] == BT_INFINITY)
|
||
|
{
|
||
|
btSwapProblem(m_A, m_x, m_b, m_w, lo, hi, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
|
||
|
m_nub++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// if there are unbounded variables at the start, factorize A up to that
|
||
|
// point and solve for x. this puts all indexes 0..nub-1 into C.
|
||
|
if (m_nub > 0)
|
||
|
{
|
||
|
const int nub = m_nub;
|
||
|
{
|
||
|
btScalar *Lrow = m_L;
|
||
|
const int nskip = m_nskip;
|
||
|
for (int j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, BTAROW(j), (j + 1) * sizeof(btScalar));
|
||
|
}
|
||
|
btFactorLDLT(m_L, m_d, nub, m_nskip);
|
||
|
memcpy(m_x, m_b, nub * sizeof(btScalar));
|
||
|
btSolveLDLT(m_L, m_d, m_x, nub, m_nskip);
|
||
|
btSetZero(m_w, nub);
|
||
|
{
|
||
|
int *C = m_C;
|
||
|
for (int k = 0; k < nub; ++k) C[k] = k;
|
||
|
}
|
||
|
m_nC = nub;
|
||
|
}
|
||
|
|
||
|
// permute the indexes > nub such that all findex variables are at the end
|
||
|
if (m_findex)
|
||
|
{
|
||
|
const int nub = m_nub;
|
||
|
int *findex = m_findex;
|
||
|
int num_at_end = 0;
|
||
|
for (int k = m_n - 1; k >= nub; k--)
|
||
|
{
|
||
|
if (findex[k] >= 0)
|
||
|
{
|
||
|
btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
|
||
|
num_at_end++;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// print info about indexes
|
||
|
/*
|
||
|
{
|
||
|
const int n = m_n;
|
||
|
const int nub = m_nub;
|
||
|
for (int k=0; k<n; k++) {
|
||
|
if (k<nub) printf ("C");
|
||
|
else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
|
||
|
else printf (".");
|
||
|
}
|
||
|
printf ("\n");
|
||
|
}
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
void btLCP::transfer_i_to_C(int i)
|
||
|
{
|
||
|
{
|
||
|
if (m_nC > 0)
|
||
|
{
|
||
|
// ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
btScalar *const Ltgt = m_L + nC * m_nskip, *ell = m_ell;
|
||
|
for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j];
|
||
|
}
|
||
|
const int nC = m_nC;
|
||
|
m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_d[0] = btRecip(BTAROW(i)[i]);
|
||
|
}
|
||
|
|
||
|
btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
|
||
|
|
||
|
const int nC = m_nC;
|
||
|
m_C[nC] = nC;
|
||
|
m_nC = nC + 1; // nC value is outdated after this line
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::transfer_i_from_N_to_C(int i)
|
||
|
{
|
||
|
{
|
||
|
if (m_nC > 0)
|
||
|
{
|
||
|
{
|
||
|
btScalar *const aptr = BTAROW(i);
|
||
|
btScalar *Dell = m_Dell;
|
||
|
const int *C = m_C;
|
||
|
#ifdef BTNUB_OPTIMIZATIONS
|
||
|
// if nub>0, initial part of aptr unpermuted
|
||
|
const int nub = m_nub;
|
||
|
int j = 0;
|
||
|
for (; j < nub; ++j) Dell[j] = aptr[j];
|
||
|
const int nC = m_nC;
|
||
|
for (; j < nC; ++j) Dell[j] = aptr[C[j]];
|
||
|
#else
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
|
||
|
#endif
|
||
|
}
|
||
|
btSolveL1(m_L, m_Dell, m_nC, m_nskip);
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
btScalar *const Ltgt = m_L + nC * m_nskip;
|
||
|
btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
|
||
|
for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
|
||
|
}
|
||
|
const int nC = m_nC;
|
||
|
m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_d[0] = btRecip(BTAROW(i)[i]);
|
||
|
}
|
||
|
|
||
|
btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
|
||
|
|
||
|
const int nC = m_nC;
|
||
|
m_C[nC] = nC;
|
||
|
m_nN--;
|
||
|
m_nC = nC + 1; // nC value is outdated after this line
|
||
|
}
|
||
|
|
||
|
// @@@ TO DO LATER
|
||
|
// if we just finish here then we'll go back and re-solve for
|
||
|
// delta_x. but actually we can be more efficient and incrementally
|
||
|
// update delta_x here. but if we do this, we wont have ell and Dell
|
||
|
// to use in updating the factorization later.
|
||
|
}
|
||
|
|
||
|
void btRemoveRowCol(btScalar *A, int n, int nskip, int r)
|
||
|
{
|
||
|
btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
|
||
|
if (r >= n - 1) return;
|
||
|
if (r > 0)
|
||
|
{
|
||
|
{
|
||
|
const size_t move_size = (n - r - 1) * sizeof(btScalar);
|
||
|
btScalar *Adst = A + r;
|
||
|
for (int i = 0; i < r; Adst += nskip, ++i)
|
||
|
{
|
||
|
btScalar *Asrc = Adst + 1;
|
||
|
memmove(Adst, Asrc, move_size);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
const size_t cpy_size = r * sizeof(btScalar);
|
||
|
btScalar *Adst = A + r * nskip;
|
||
|
for (int i = r; i < (n - 1); ++i)
|
||
|
{
|
||
|
btScalar *Asrc = Adst + nskip;
|
||
|
memcpy(Adst, Asrc, cpy_size);
|
||
|
Adst = Asrc;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
const size_t cpy_size = (n - r - 1) * sizeof(btScalar);
|
||
|
btScalar *Adst = A + r * (nskip + 1);
|
||
|
for (int i = r; i < (n - 1); ++i)
|
||
|
{
|
||
|
btScalar *Asrc = Adst + (nskip + 1);
|
||
|
memcpy(Adst, Asrc, cpy_size);
|
||
|
Adst = Asrc - 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar> &scratch)
|
||
|
{
|
||
|
btAssert(L && d && a && n > 0 && nskip >= n);
|
||
|
|
||
|
if (n < 2) return;
|
||
|
scratch.resize(2 * nskip);
|
||
|
btScalar *W1 = &scratch[0];
|
||
|
|
||
|
btScalar *W2 = W1 + nskip;
|
||
|
|
||
|
W1[0] = btScalar(0.0);
|
||
|
W2[0] = btScalar(0.0);
|
||
|
for (int j = 1; j < n; ++j)
|
||
|
{
|
||
|
W1[j] = W2[j] = (btScalar)(a[j] * SIMDSQRT12);
|
||
|
}
|
||
|
btScalar W11 = (btScalar)((btScalar(0.5) * a[0] + 1) * SIMDSQRT12);
|
||
|
btScalar W21 = (btScalar)((btScalar(0.5) * a[0] - 1) * SIMDSQRT12);
|
||
|
|
||
|
btScalar alpha1 = btScalar(1.0);
|
||
|
btScalar alpha2 = btScalar(1.0);
|
||
|
|
||
|
{
|
||
|
btScalar dee = d[0];
|
||
|
btScalar alphanew = alpha1 + (W11 * W11) * dee;
|
||
|
btAssert(alphanew != btScalar(0.0));
|
||
|
dee /= alphanew;
|
||
|
btScalar gamma1 = W11 * dee;
|
||
|
dee *= alpha1;
|
||
|
alpha1 = alphanew;
|
||
|
alphanew = alpha2 - (W21 * W21) * dee;
|
||
|
dee /= alphanew;
|
||
|
//btScalar gamma2 = W21 * dee;
|
||
|
alpha2 = alphanew;
|
||
|
btScalar k1 = btScalar(1.0) - W21 * gamma1;
|
||
|
btScalar k2 = W21 * gamma1 * W11 - W21;
|
||
|
btScalar *ll = L + nskip;
|
||
|
for (int p = 1; p < n; ll += nskip, ++p)
|
||
|
{
|
||
|
btScalar Wp = W1[p];
|
||
|
btScalar ell = *ll;
|
||
|
W1[p] = Wp - W11 * ell;
|
||
|
W2[p] = k1 * Wp + k2 * ell;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar *ll = L + (nskip + 1);
|
||
|
for (int j = 1; j < n; ll += nskip + 1, ++j)
|
||
|
{
|
||
|
btScalar k1 = W1[j];
|
||
|
btScalar k2 = W2[j];
|
||
|
|
||
|
btScalar dee = d[j];
|
||
|
btScalar alphanew = alpha1 + (k1 * k1) * dee;
|
||
|
btAssert(alphanew != btScalar(0.0));
|
||
|
dee /= alphanew;
|
||
|
btScalar gamma1 = k1 * dee;
|
||
|
dee *= alpha1;
|
||
|
alpha1 = alphanew;
|
||
|
alphanew = alpha2 - (k2 * k2) * dee;
|
||
|
dee /= alphanew;
|
||
|
btScalar gamma2 = k2 * dee;
|
||
|
dee *= alpha2;
|
||
|
d[j] = dee;
|
||
|
alpha2 = alphanew;
|
||
|
|
||
|
btScalar *l = ll + nskip;
|
||
|
for (int p = j + 1; p < n; l += nskip, ++p)
|
||
|
{
|
||
|
btScalar ell = *l;
|
||
|
btScalar Wp = W1[p] - k1 * ell;
|
||
|
ell += gamma1 * Wp;
|
||
|
W1[p] = Wp;
|
||
|
Wp = W2[p] - k2 * ell;
|
||
|
ell -= gamma2 * Wp;
|
||
|
W2[p] = Wp;
|
||
|
*l = ell;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define _BTGETA(i, j) (A[i][j])
|
||
|
//#define _GETA(i,j) (A[(i)*nskip+(j)])
|
||
|
#define BTGETA(i, j) ((i > j) ? _BTGETA(i, j) : _BTGETA(j, i))
|
||
|
|
||
|
inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
|
||
|
{
|
||
|
return nskip * 2 * sizeof(btScalar);
|
||
|
}
|
||
|
|
||
|
void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d,
|
||
|
int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar> &scratch)
|
||
|
{
|
||
|
btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
|
||
|
n1 >= n2 && nskip >= n1);
|
||
|
#ifdef BT_DEBUG
|
||
|
for (int i = 0; i < n2; ++i)
|
||
|
btAssert(p[i] >= 0 && p[i] < n1);
|
||
|
#endif
|
||
|
|
||
|
if (r == n2 - 1)
|
||
|
{
|
||
|
return; // deleting last row/col is easy
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
|
||
|
btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
|
||
|
scratch.resize(nskip * 2 + n2);
|
||
|
btScalar *tmp = &scratch[0];
|
||
|
if (r == 0)
|
||
|
{
|
||
|
btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
|
||
|
const int p_0 = p[0];
|
||
|
for (int i = 0; i < n2; ++i)
|
||
|
{
|
||
|
a[i] = -BTGETA(p[i], p_0);
|
||
|
}
|
||
|
a[0] += btScalar(1.0);
|
||
|
btLDLTAddTL(L, d, a, n2, nskip, scratch);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
|
||
|
{
|
||
|
btScalar *Lcurr = L + r * nskip;
|
||
|
for (int i = 0; i < r; ++Lcurr, ++i)
|
||
|
{
|
||
|
btAssert(d[i] != btScalar(0.0));
|
||
|
t[i] = *Lcurr / d[i];
|
||
|
}
|
||
|
}
|
||
|
btScalar *a = t + r;
|
||
|
{
|
||
|
btScalar *Lcurr = L + r * nskip;
|
||
|
const int *pp_r = p + r, p_r = *pp_r;
|
||
|
const int n2_minus_r = n2 - r;
|
||
|
for (int i = 0; i < n2_minus_r; Lcurr += nskip, ++i)
|
||
|
{
|
||
|
a[i] = btLargeDot(Lcurr, t, r) - BTGETA(pp_r[i], p_r);
|
||
|
}
|
||
|
}
|
||
|
a[0] += btScalar(1.0);
|
||
|
btLDLTAddTL(L + r * nskip + r, d + r, a, n2 - r, nskip, scratch);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// snip out row/column r from L and d
|
||
|
btRemoveRowCol(L, n2, nskip, r);
|
||
|
if (r < (n2 - 1)) memmove(d + r, d + r + 1, (n2 - r - 1) * sizeof(btScalar));
|
||
|
}
|
||
|
|
||
|
void btLCP::transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch)
|
||
|
{
|
||
|
{
|
||
|
int *C = m_C;
|
||
|
// remove a row/column from the factorization, and adjust the
|
||
|
// indexes (black magic!)
|
||
|
int last_idx = -1;
|
||
|
const int nC = m_nC;
|
||
|
int j = 0;
|
||
|
for (; j < nC; ++j)
|
||
|
{
|
||
|
if (C[j] == nC - 1)
|
||
|
{
|
||
|
last_idx = j;
|
||
|
}
|
||
|
if (C[j] == i)
|
||
|
{
|
||
|
btLDLTRemove(m_A, C, m_L, m_d, m_n, nC, j, m_nskip, scratch);
|
||
|
int k;
|
||
|
if (last_idx == -1)
|
||
|
{
|
||
|
for (k = j + 1; k < nC; ++k)
|
||
|
{
|
||
|
if (C[k] == nC - 1)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
btAssert(k < nC);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
k = last_idx;
|
||
|
}
|
||
|
C[k] = C[j];
|
||
|
if (j < (nC - 1)) memmove(C + j, C + j + 1, (nC - j - 1) * sizeof(int));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
btAssert(j < nC);
|
||
|
|
||
|
btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
|
||
|
|
||
|
m_nN++;
|
||
|
m_nC = nC - 1; // nC value is outdated after this line
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::pN_equals_ANC_times_qC(btScalar *p, btScalar *q)
|
||
|
{
|
||
|
// we could try to make this matrix-vector multiplication faster using
|
||
|
// outer product matrix tricks, e.g. with the dMultidotX() functions.
|
||
|
// but i tried it and it actually made things slower on random 100x100
|
||
|
// problems because of the overhead involved. so we'll stick with the
|
||
|
// simple method for now.
|
||
|
const int nC = m_nC;
|
||
|
btScalar *ptgt = p + nC;
|
||
|
const int nN = m_nN;
|
||
|
for (int i = 0; i < nN; ++i)
|
||
|
{
|
||
|
ptgt[i] = btLargeDot(BTAROW(i + nC), q, nC);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::pN_plusequals_ANi(btScalar *p, int i, int sign)
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
btScalar *aptr = BTAROW(i) + nC;
|
||
|
btScalar *ptgt = p + nC;
|
||
|
if (sign > 0)
|
||
|
{
|
||
|
const int nN = m_nN;
|
||
|
for (int j = 0; j < nN; ++j) ptgt[j] += aptr[j];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
const int nN = m_nN;
|
||
|
for (int j = 0; j < nN; ++j) ptgt[j] -= aptr[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q)
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
for (int i = 0; i < nC; ++i)
|
||
|
{
|
||
|
p[i] += s * q[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q)
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
btScalar *ptgt = p + nC, *qsrc = q + nC;
|
||
|
const int nN = m_nN;
|
||
|
for (int i = 0; i < nN; ++i)
|
||
|
{
|
||
|
ptgt[i] += s * qsrc[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::solve1(btScalar *a, int i, int dir, int only_transfer)
|
||
|
{
|
||
|
// the `Dell' and `ell' that are computed here are saved. if index i is
|
||
|
// later added to the factorization then they can be reused.
|
||
|
//
|
||
|
// @@@ question: do we need to solve for entire delta_x??? yes, but
|
||
|
// only if an x goes below 0 during the step.
|
||
|
|
||
|
if (m_nC > 0)
|
||
|
{
|
||
|
{
|
||
|
btScalar *Dell = m_Dell;
|
||
|
int *C = m_C;
|
||
|
btScalar *aptr = BTAROW(i);
|
||
|
#ifdef BTNUB_OPTIMIZATIONS
|
||
|
// if nub>0, initial part of aptr[] is guaranteed unpermuted
|
||
|
const int nub = m_nub;
|
||
|
int j = 0;
|
||
|
for (; j < nub; ++j) Dell[j] = aptr[j];
|
||
|
const int nC = m_nC;
|
||
|
for (; j < nC; ++j) Dell[j] = aptr[C[j]];
|
||
|
#else
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
|
||
|
#endif
|
||
|
}
|
||
|
btSolveL1(m_L, m_Dell, m_nC, m_nskip);
|
||
|
{
|
||
|
btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
|
||
|
}
|
||
|
|
||
|
if (!only_transfer)
|
||
|
{
|
||
|
btScalar *tmp = m_tmp, *ell = m_ell;
|
||
|
{
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) tmp[j] = ell[j];
|
||
|
}
|
||
|
btSolveL1T(m_L, tmp, m_nC, m_nskip);
|
||
|
if (dir > 0)
|
||
|
{
|
||
|
int *C = m_C;
|
||
|
btScalar *tmp = m_tmp;
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int *C = m_C;
|
||
|
btScalar *tmp = m_tmp;
|
||
|
const int nC = m_nC;
|
||
|
for (int j = 0; j < nC; ++j) a[C[j]] = tmp[j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btLCP::unpermute()
|
||
|
{
|
||
|
// now we have to un-permute x and w
|
||
|
{
|
||
|
memcpy(m_tmp, m_x, m_n * sizeof(btScalar));
|
||
|
btScalar *x = m_x, *tmp = m_tmp;
|
||
|
const int *p = m_p;
|
||
|
const int n = m_n;
|
||
|
for (int j = 0; j < n; ++j) x[p[j]] = tmp[j];
|
||
|
}
|
||
|
{
|
||
|
memcpy(m_tmp, m_w, m_n * sizeof(btScalar));
|
||
|
btScalar *w = m_w, *tmp = m_tmp;
|
||
|
const int *p = m_p;
|
||
|
const int n = m_n;
|
||
|
for (int j = 0; j < n; ++j) w[p[j]] = tmp[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // btLCP_FAST
|
||
|
|
||
|
//***************************************************************************
|
||
|
// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
|
||
|
|
||
|
bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b,
|
||
|
btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem)
|
||
|
{
|
||
|
s_error = false;
|
||
|
|
||
|
// printf("btSolveDantzigLCP n=%d\n",n);
|
||
|
btAssert(n > 0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
|
||
|
btAssert(outer_w);
|
||
|
|
||
|
#ifdef BT_DEBUG
|
||
|
{
|
||
|
// check restrictions on lo and hi
|
||
|
for (int k = 0; k < n; ++k)
|
||
|
btAssert(lo[k] <= 0 && hi[k] >= 0);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// if all the variables are unbounded then we can just factor, solve,
|
||
|
// and return
|
||
|
if (nub >= n)
|
||
|
{
|
||
|
int nskip = (n);
|
||
|
btFactorLDLT(A, outer_w, n, nskip);
|
||
|
btSolveLDLT(A, outer_w, b, n, nskip);
|
||
|
memcpy(x, b, n * sizeof(btScalar));
|
||
|
|
||
|
return !s_error;
|
||
|
}
|
||
|
|
||
|
const int nskip = (n);
|
||
|
scratchMem.L.resize(n * nskip);
|
||
|
|
||
|
scratchMem.d.resize(n);
|
||
|
|
||
|
btScalar *w = outer_w;
|
||
|
scratchMem.delta_w.resize(n);
|
||
|
scratchMem.delta_x.resize(n);
|
||
|
scratchMem.Dell.resize(n);
|
||
|
scratchMem.ell.resize(n);
|
||
|
scratchMem.Arows.resize(n);
|
||
|
scratchMem.p.resize(n);
|
||
|
scratchMem.C.resize(n);
|
||
|
|
||
|
// for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
|
||
|
scratchMem.state.resize(n);
|
||
|
|
||
|
// create LCP object. note that tmp is set to delta_w to save space, this
|
||
|
// optimization relies on knowledge of how tmp is used, so be careful!
|
||
|
btLCP lcp(n, nskip, nub, A, x, b, w, lo, hi, &scratchMem.L[0], &scratchMem.d[0], &scratchMem.Dell[0], &scratchMem.ell[0], &scratchMem.delta_w[0], &scratchMem.state[0], findex, &scratchMem.p[0], &scratchMem.C[0], &scratchMem.Arows[0]);
|
||
|
int adj_nub = lcp.getNub();
|
||
|
|
||
|
// loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
|
||
|
// LCP conditions then i is added to the appropriate index set. otherwise
|
||
|
// x(i),w(i) is driven either +ve or -ve to force it to the valid region.
|
||
|
// as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
|
||
|
// while driving x(i) we maintain the LCP conditions on the other variables
|
||
|
// 0..i-1. we do this by watching out for other x(i),w(i) values going
|
||
|
// outside the valid region, and then switching them between index sets
|
||
|
// when that happens.
|
||
|
|
||
|
bool hit_first_friction_index = false;
|
||
|
for (int i = adj_nub; i < n; ++i)
|
||
|
{
|
||
|
s_error = false;
|
||
|
// the index i is the driving index and indexes i+1..n-1 are "dont care",
|
||
|
// i.e. when we make changes to the system those x's will be zero and we
|
||
|
// don't care what happens to those w's. in other words, we only consider
|
||
|
// an (i+1)*(i+1) sub-problem of A*x=b+w.
|
||
|
|
||
|
// if we've hit the first friction index, we have to compute the lo and
|
||
|
// hi values based on the values of x already computed. we have been
|
||
|
// permuting the indexes, so the values stored in the findex vector are
|
||
|
// no longer valid. thus we have to temporarily unpermute the x vector.
|
||
|
// for the purposes of this computation, 0*infinity = 0 ... so if the
|
||
|
// contact constraint's normal force is 0, there should be no tangential
|
||
|
// force applied.
|
||
|
|
||
|
if (!hit_first_friction_index && findex && findex[i] >= 0)
|
||
|
{
|
||
|
// un-permute x into delta_w, which is not being used at the moment
|
||
|
for (int j = 0; j < n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
|
||
|
|
||
|
// set lo and hi values
|
||
|
for (int k = i; k < n; ++k)
|
||
|
{
|
||
|
btScalar wfk = scratchMem.delta_w[findex[k]];
|
||
|
if (wfk == 0)
|
||
|
{
|
||
|
hi[k] = 0;
|
||
|
lo[k] = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
hi[k] = btFabs(hi[k] * wfk);
|
||
|
lo[k] = -hi[k];
|
||
|
}
|
||
|
}
|
||
|
hit_first_friction_index = true;
|
||
|
}
|
||
|
|
||
|
// thus far we have not even been computing the w values for indexes
|
||
|
// greater than i, so compute w[i] now.
|
||
|
w[i] = lcp.AiC_times_qC(i, x) + lcp.AiN_times_qN(i, x) - b[i];
|
||
|
|
||
|
// if lo=hi=0 (which can happen for tangential friction when normals are
|
||
|
// 0) then the index will be assigned to set N with some state. however,
|
||
|
// set C's line has zero size, so the index will always remain in set N.
|
||
|
// with the "normal" switching logic, if w changed sign then the index
|
||
|
// would have to switch to set C and then back to set N with an inverted
|
||
|
// state. this is pointless, and also computationally expensive. to
|
||
|
// prevent this from happening, we use the rule that indexes with lo=hi=0
|
||
|
// will never be checked for set changes. this means that the state for
|
||
|
// these indexes may be incorrect, but that doesn't matter.
|
||
|
|
||
|
// see if x(i),w(i) is in a valid region
|
||
|
if (lo[i] == 0 && w[i] >= 0)
|
||
|
{
|
||
|
lcp.transfer_i_to_N(i);
|
||
|
scratchMem.state[i] = false;
|
||
|
}
|
||
|
else if (hi[i] == 0 && w[i] <= 0)
|
||
|
{
|
||
|
lcp.transfer_i_to_N(i);
|
||
|
scratchMem.state[i] = true;
|
||
|
}
|
||
|
else if (w[i] == 0)
|
||
|
{
|
||
|
// this is a degenerate case. by the time we get to this test we know
|
||
|
// that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
|
||
|
// and similarly that hi > 0. this means that the line segment
|
||
|
// corresponding to set C is at least finite in extent, and we are on it.
|
||
|
// NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
|
||
|
lcp.solve1(&scratchMem.delta_x[0], i, 0, 1);
|
||
|
|
||
|
lcp.transfer_i_to_C(i);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// we must push x(i) and w(i)
|
||
|
for (;;)
|
||
|
{
|
||
|
int dir;
|
||
|
btScalar dirf;
|
||
|
// find direction to push on x(i)
|
||
|
if (w[i] <= 0)
|
||
|
{
|
||
|
dir = 1;
|
||
|
dirf = btScalar(1.0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dir = -1;
|
||
|
dirf = btScalar(-1.0);
|
||
|
}
|
||
|
|
||
|
// compute: delta_x(C) = -dir*A(C,C)\A(C,i)
|
||
|
lcp.solve1(&scratchMem.delta_x[0], i, dir);
|
||
|
|
||
|
// note that delta_x[i] = dirf, but we wont bother to set it
|
||
|
|
||
|
// compute: delta_w = A*delta_x ... note we only care about
|
||
|
// delta_w(N) and delta_w(i), the rest is ignored
|
||
|
lcp.pN_equals_ANC_times_qC(&scratchMem.delta_w[0], &scratchMem.delta_x[0]);
|
||
|
lcp.pN_plusequals_ANi(&scratchMem.delta_w[0], i, dir);
|
||
|
scratchMem.delta_w[i] = lcp.AiC_times_qC(i, &scratchMem.delta_x[0]) + lcp.Aii(i) * dirf;
|
||
|
|
||
|
// find largest step we can take (size=s), either to drive x(i),w(i)
|
||
|
// to the valid LCP region or to drive an already-valid variable
|
||
|
// outside the valid region.
|
||
|
|
||
|
int cmd = 1; // index switching command
|
||
|
int si = 0; // si = index to switch if cmd>3
|
||
|
btScalar s = -w[i] / scratchMem.delta_w[i];
|
||
|
if (dir > 0)
|
||
|
{
|
||
|
if (hi[i] < BT_INFINITY)
|
||
|
{
|
||
|
btScalar s2 = (hi[i] - x[i]) * dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
|
||
|
if (s2 < s)
|
||
|
{
|
||
|
s = s2;
|
||
|
cmd = 3;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (lo[i] > -BT_INFINITY)
|
||
|
{
|
||
|
btScalar s2 = (lo[i] - x[i]) * dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
|
||
|
if (s2 < s)
|
||
|
{
|
||
|
s = s2;
|
||
|
cmd = 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
const int numN = lcp.numN();
|
||
|
for (int k = 0; k < numN; ++k)
|
||
|
{
|
||
|
const int indexN_k = lcp.indexN(k);
|
||
|
if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0)
|
||
|
{
|
||
|
// don't bother checking if lo=hi=0
|
||
|
if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
|
||
|
btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
|
||
|
if (s2 < s)
|
||
|
{
|
||
|
s = s2;
|
||
|
cmd = 4;
|
||
|
si = indexN_k;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
const int numC = lcp.numC();
|
||
|
for (int k = adj_nub; k < numC; ++k)
|
||
|
{
|
||
|
const int indexC_k = lcp.indexC(k);
|
||
|
if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY)
|
||
|
{
|
||
|
btScalar s2 = (lo[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
|
||
|
if (s2 < s)
|
||
|
{
|
||
|
s = s2;
|
||
|
cmd = 5;
|
||
|
si = indexC_k;
|
||
|
}
|
||
|
}
|
||
|
if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY)
|
||
|
{
|
||
|
btScalar s2 = (hi[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
|
||
|
if (s2 < s)
|
||
|
{
|
||
|
s = s2;
|
||
|
cmd = 6;
|
||
|
si = indexC_k;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
|
||
|
// "C->NL","C->NH"};
|
||
|
//printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
|
||
|
|
||
|
// if s <= 0 then we've got a problem. if we just keep going then
|
||
|
// we're going to get stuck in an infinite loop. instead, just cross
|
||
|
// our fingers and exit with the current solution.
|
||
|
if (s <= btScalar(0.0))
|
||
|
{
|
||
|
// printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
|
||
|
if (i < n)
|
||
|
{
|
||
|
btSetZero(x + i, n - i);
|
||
|
btSetZero(w + i, n - i);
|
||
|
}
|
||
|
s_error = true;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// apply x = x + s * delta_x
|
||
|
lcp.pC_plusequals_s_times_qC(x, s, &scratchMem.delta_x[0]);
|
||
|
x[i] += s * dirf;
|
||
|
|
||
|
// apply w = w + s * delta_w
|
||
|
lcp.pN_plusequals_s_times_qN(w, s, &scratchMem.delta_w[0]);
|
||
|
w[i] += s * scratchMem.delta_w[i];
|
||
|
|
||
|
// void *tmpbuf;
|
||
|
// switch indexes between sets if necessary
|
||
|
switch (cmd)
|
||
|
{
|
||
|
case 1: // done
|
||
|
w[i] = 0;
|
||
|
lcp.transfer_i_to_C(i);
|
||
|
break;
|
||
|
case 2: // done
|
||
|
x[i] = lo[i];
|
||
|
scratchMem.state[i] = false;
|
||
|
lcp.transfer_i_to_N(i);
|
||
|
break;
|
||
|
case 3: // done
|
||
|
x[i] = hi[i];
|
||
|
scratchMem.state[i] = true;
|
||
|
lcp.transfer_i_to_N(i);
|
||
|
break;
|
||
|
case 4: // keep going
|
||
|
w[si] = 0;
|
||
|
lcp.transfer_i_from_N_to_C(si);
|
||
|
break;
|
||
|
case 5: // keep going
|
||
|
x[si] = lo[si];
|
||
|
scratchMem.state[si] = false;
|
||
|
lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
|
||
|
break;
|
||
|
case 6: // keep going
|
||
|
x[si] = hi[si];
|
||
|
scratchMem.state[si] = true;
|
||
|
lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (cmd <= 3) break;
|
||
|
} // for (;;)
|
||
|
} // else
|
||
|
|
||
|
if (s_error)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
} // for (int i=adj_nub; i<n; ++i)
|
||
|
|
||
|
lcp.unpermute();
|
||
|
|
||
|
return !s_error;
|
||
|
}
|