Every class which is not a built-in type inherits from this class.
You can construct Objects from scripting languages, using [code]Object.new()[/code] in GDScript, [code]new Object[/code] in C#, or the "Construct Object" node in VisualScript.
Objects do not manage memory. If a class inherits from Object, you will have to delete instances of it manually. To do so, call the [method free] method from your script or delete the instance from C++.
Some classes that extend Object add memory management. This is the case of [Reference], which counts references and deletes itself automatically when no longer referenced. [Node], another fundamental type, deletes all its children when freed from memory.
Objects export properties, which are mainly useful for storage and editing, but not really so much in programming. Properties are exported in [method _get_property_list] and handled in [method _get] and [method _set]. However, scripting languages and C++ have simpler means to export them.
Property membership can be tested directly in GDScript using [code]in[/code]:
[codeblock]
var n = Node2D.new()
print("position" in n) # Prints "True".
print("other_property" in n) # Prints "False".
[/codeblock]
The [code]in[/code] operator will evaluate to [code]true[/code] as long as the key exists, even if the value is [code]null[/code].
Objects also receive notifications. Notifications are a simple way to notify the object about different events, so they can all be handled together. See [method _notification].
[b]Note:[/b] Unlike references to a [Reference], references to an Object stored in a variable can become invalid without warning. Therefore, it's recommended to use [Reference] for data classes instead of [Object].
[b]Note:[/b] Due to a bug, you can't create a "plain" Object using [code]Object.new()[/code]. Instead, use [code]ClassDB.instance("Object")[/code]. This bug only applies to Object itself, not any of its descendents like [Reference].
Virtual method which can be overridden to customize the return value of [method get_property_list].
Returns the object's property list as an [Array] of dictionaries.
Each property's [Dictionary] must contain at least [code]name: String[/code] and [code]type: int[/code] (see [enum Variant.Type]) entries. Optionally, it can also include [code]hint: int[/code] (see [enum PropertyHint]), [code]hint_string: String[/code], and [code]usage: int[/code] (see [enum PropertyUsageFlags]).
Called when the object is initialized in memory. Can be defined to take in parameters, that are passed in when constructing.
[b]Note:[/b] If [method _init] is defined with required parameters, then explicit construction is the only valid means of creating an Object of the class. If any other means (such as [method PackedScene.instance]) is used, then initialization will fail.
Called whenever the object receives a notification, which is identified in [code]what[/code] by a constant. The base [Object] has two constants [constant NOTIFICATION_POSTINITIALIZE] and [constant NOTIFICATION_PREDELETE], but subclasses such as [Node] define a lot more notifications which are also received by this method.
Virtual method which can be overridden to customize the return value of [method to_string], and thus the object's representation where it is converted to a string, e.g. with [code]print(obj)[/code].
Returns a [String] representing the object. If not overridden, defaults to [code]"[ClassName:RID]"[/code].
Adds a user-defined [code]signal[/code]. Arguments are optional, but can be added as an [Array] of dictionaries, each containing [code]name: String[/code] and [code]type: int[/code] (see [enum Variant.Type]) entries.
Calls the [code]method[/code] on the object and returns the result. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:
[codeblock]
call("set", "position", Vector2(42.0, 0.0))
[/codeblock]
[b]Note:[/b] In C#, the method name must be specified as snake_case if it is defined by a built-in Godot node. This doesn't apply to user-defined methods where you should use the same convention as in the C# source (typically PascalCase).
Calls the [code]method[/code] on the object during idle time. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:
[b]Note:[/b] In C#, the method name must be specified as snake_case if it is defined by a built-in Godot node. This doesn't apply to user-defined methods where you should use the same convention as in the C# source (typically PascalCase).
Calls the [code]method[/code] on the object and returns the result. Contrarily to [method call], this method does not support a variable number of arguments but expects all parameters to be via a single [Array].
If this method is called during [constant NOTIFICATION_PREDELETE], this object will reject being freed and will remain allocated. This is mostly an internal function used for error handling to avoid the user from freeing objects when they are not intended to.
Connects a [code]signal[/code] to a [code]method[/code] on a [code]target[/code] object. Pass optional [code]binds[/code] to the call as an [Array] of parameters. These parameters will be passed to the method after any parameter used in the call to [method emit_signal]. Use [code]flags[/code] to set deferred or one-shot connections. See [enum ConnectFlags] constants.
A [code]signal[/code] can only be connected once to a [code]method[/code]. It will print an error if already connected, unless the signal was connected with [constant CONNECT_REFERENCE_COUNTED]. To avoid this, first, use [method is_connected] to check for existing connections.
If the [code]target[/code] is destroyed in the game's lifecycle, the connection will be lost.
Examples:
[codeblock]
connect("pressed", self, "_on_Button_pressed") # BaseButton signal
connect("text_entered", self, "_on_LineEdit_text_entered") # LineEdit signal
connect("hit", self, "_on_Player_hit", [ weapon_type, damage ]) # User-defined signal
[/codeblock]
An example of the relationship between [code]binds[/code] passed to [method connect] and parameters used when calling [method emit_signal]:
[codeblock]
connect("hit", self, "_on_Player_hit", [ weapon_type, damage ]) # weapon_type and damage are passed last
emit_signal("hit", "Dark lord", 5) # "Dark lord" and 5 are passed first
Disconnects a [code]signal[/code] from a [code]method[/code] on the given [code]target[/code].
If you try to disconnect a connection that does not exist, the method will print an error. Use [method is_connected] to ensure that the connection exists.
Emits the given [code]signal[/code]. The signal must exist, so it should be a built-in signal of this class or one of its parent classes, or a user-defined signal. This method supports a variable number of arguments, so parameters are passed as a comma separated list. Example:
Deletes the object from memory immediately. For [Node]s, you may want to use [method Node.queue_free] to queue the node for safe deletion at the end of the current frame.
[b]Important:[/b] If you have a variable pointing to an object, it will [i]not[/i] be assigned to [code]null[/code] once the object is freed. Instead, it will point to a [i]previously freed instance[/i] and you should validate it with [method @GDScript.is_instance_valid] before attempting to call its methods or access its properties.
</description>
</method>
<methodname="get"qualifiers="const">
<returntype="Variant"/>
<argumentindex="0"name="property"type="String"/>
<description>
Returns the [Variant] value of the given [code]property[/code]. If the [code]property[/code] doesn't exist, this will return [code]null[/code].
[b]Note:[/b] In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn't apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).
</description>
</method>
<methodname="get_class"qualifiers="const">
<returntype="String"/>
<description>
Returns the object's class as a [String]. See also [method is_class].
[b]Note:[/b] [method get_class] does not take [code]class_name[/code] declarations into account. If the object has a [code]class_name[/code] defined, the base class name will be returned instead.
Gets the object's property indexed by the given [code]property_path[/code]. The path should be a [NodePath] relative to the current object and can use the colon character ([code]:[/code]) to access nested properties. Examples: [code]"position:x"[/code] or [code]"material:next_pass:blend_mode"[/code].
[b]Note:[/b] Even though the method takes [NodePath] argument, it doesn't support actual paths to [Node]s in the scene tree, only colon-separated sub-property paths. For the purpose of nodes, use [method Node.get_node_and_resource] instead.
</description>
</method>
<methodname="get_instance_id"qualifiers="const">
<returntype="int"/>
<description>
Returns the object's unique instance ID.
This ID can be saved in [EncodedObjectAsID], and can be used to retrieve the object instance with [method @GDScript.instance_from_id].
Returns the object's property list as an [Array] of dictionaries.
Each property's [Dictionary] contain at least [code]name: String[/code] and [code]type: int[/code] (see [enum Variant.Type]) entries. Optionally, it can also include [code]hint: int[/code] (see [enum PropertyHint]), [code]hint_string: String[/code], and [code]usage: int[/code] (see [enum PropertyUsageFlags]).
</description>
</method>
<methodname="get_script"qualifiers="const">
<returntype="Reference"/>
<description>
Returns the object's [Script] instance, or [code]null[/code] if none is assigned.
Returns [code]true[/code] if the given user-defined [code]signal[/code] exists. Only signals added using [method add_user_signal] are taken into account.
Returns [code]true[/code] if signal emission blocking is enabled.
</description>
</method>
<methodname="is_class"qualifiers="const">
<returntype="bool"/>
<argumentindex="0"name="class"type="String"/>
<description>
Returns [code]true[/code] if the object inherits from the given [code]class[/code]. See also [method get_class].
[b]Note:[/b] [method is_class] does not take [code]class_name[/code] declarations into account. If the object has a [code]class_name[/code] defined, [method is_class] will return [code]false[/code] for that name.
Send a given notification to the object, which will also trigger a call to the [method _notification] method of all classes that the object inherits from.
If [code]reversed[/code] is [code]true[/code], [method _notification] is called first on the object's own class, and then up to its successive parent classes. If [code]reversed[/code] is [code]false[/code], [method _notification] is called first on the highest ancestor ([Object] itself), and then down to its successive inheriting classes.
</description>
</method>
<methodname="property_list_changed_notify">
<returntype="void"/>
<description>
Notify the editor that the property list has changed, so that editor plugins can take the new values into account. Does nothing on export builds.
</description>
</method>
<methodname="remove_meta">
<returntype="void"/>
<argumentindex="0"name="name"type="String"/>
<description>
Removes a given entry from the object's metadata. See also [method set_meta].
</description>
</method>
<methodname="set">
<returntype="void"/>
<argumentindex="0"name="property"type="String"/>
<argumentindex="1"name="value"type="Variant"/>
<description>
Assigns a new value to the given property. If the [code]property[/code] does not exist or the given value's type doesn't match, nothing will happen.
[b]Note:[/b] In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn't apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).
</description>
</method>
<methodname="set_block_signals">
<returntype="void"/>
<argumentindex="0"name="enable"type="bool"/>
<description>
If set to [code]true[/code], signal emission is blocked.
Assigns a new value to the given property, after the current frame's physics step. This is equivalent to calling [method set] via [method call_deferred], i.e. [code]call_deferred("set", property, value)[/code].
[b]Note:[/b] In C#, the property name must be specified as snake_case if it is defined by a built-in Godot node. This doesn't apply to user-defined properties where you should use the same convention as in the C# source (typically PascalCase).
Assigns a new value to the property identified by the [code]property_path[/code]. The path should be a [NodePath] relative to the current object and can use the colon character ([code]:[/code]) to access nested properties. Example:
Defines whether the object can translate strings (with calls to [method tr]). Enabled by default.
</description>
</method>
<methodname="set_meta">
<returntype="void"/>
<argumentindex="0"name="name"type="String"/>
<argumentindex="1"name="value"type="Variant"/>
<description>
Adds, changes or removes a given entry in the object's metadata. Metadata are serialized and can take any [Variant] value.
To remove a given entry from the object's metadata, use [method remove_meta]. Metadata is also removed if its value is set to [code]null[/code]. This means you can also use [code]set_meta("name", null)[/code] to remove metadata for [code]"name"[/code].
</description>
</method>
<methodname="set_script">
<returntype="void"/>
<argumentindex="0"name="script"type="Reference"/>
<description>
Assigns a script to the object. Each object can have a single script assigned to it, which are used to extend its functionality.
If the object already had a script, the previous script instance will be freed and its variables and state will be lost. The new script's [method _init] method will be called.
</description>
</method>
<methodname="to_string">
<returntype="String"/>
<description>
Returns a [String] representing the object. If not overridden, defaults to [code]"[ClassName:RID]"[/code].
Override the method [method _to_string] to customize the [String] representation.
Translates a message using translation catalogs configured in the Project Settings.
Only works if message translation is enabled (which it is by default), otherwise it returns the [code]message[/code] unchanged. See [method set_message_translation].
Translates a message to the specified locale, of if it can't to the application's default locale using translation catalogs configured in the Project Settings.
Only works if message translation is enabled (which it is by default), otherwise it returns the [code]message[/code] unchanged. See [method set_message_translation].
Connect a signal as reference-counted. This means that a given signal can be connected several times to the same target, and will only be fully disconnected once no references are left.