gdnative_cpp/include/core/Mathp.hpp

303 lines
8.9 KiB
C++

/*************************************************************************/
/* Math.hpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef GODOT_MATH_H
#define GODOT_MATH_H
#include "Defs.hpp"
#include <cmath>
namespace godot {
namespace Mathp {
// Functions reproduced as in Godot's source code `math_funcs.h`.
// Some are overloads to automatically support changing real_t into either double or float in the way Godot does.
inline double fmod(double p_x, double p_y) {
return ::fmod(p_x, p_y);
}
inline float fmod(float p_x, float p_y) {
return ::fmodf(p_x, p_y);
}
inline double floor(double p_x) {
return ::floor(p_x);
}
inline float floor(float p_x) {
return ::floorf(p_x);
}
inline double exp(double p_x) {
return ::exp(p_x);
}
inline float exp(float p_x) {
return ::expf(p_x);
}
inline double sin(double p_x) {
return ::sin(p_x);
}
inline float sin(float p_x) {
return ::sinf(p_x);
}
inline double cos(double p_x) {
return ::cos(p_x);
}
inline float cos(float p_x) {
return ::cosf(p_x);
}
inline double tan(double p_x) {
return ::tan(p_x);
}
inline float tan(float p_x) {
return ::tanf(p_x);
}
inline double asin(double p_x) {
return ::asin(p_x);
}
inline float asin(float p_x) {
return ::asinf(p_x);
}
inline double acos(double p_x) {
return ::acos(p_x);
}
inline float acos(float p_x) {
return ::acosf(p_x);
}
inline double atan(double p_x) {
return ::atan(p_x);
}
inline float atan(float p_x) {
return ::atanf(p_x);
}
inline double atan2(double p_y, double p_x) {
return ::atan2(p_y, p_x);
}
inline float atan2(float p_y, float p_x) {
return ::atan2f(p_y, p_x);
}
inline double sqrt(double p_x) {
return ::sqrt(p_x);
}
inline float sqrt(float p_x) {
return ::sqrtf(p_x);
}
inline float lerp(float minv, float maxv, float t) {
return minv + t * (maxv - minv);
}
inline double lerp(double minv, double maxv, double t) {
return minv + t * (maxv - minv);
}
inline double lerp_angle(double p_from, double p_to, double p_weight) {
double difference = fmod(p_to - p_from, Math_TAU);
double distance = fmod(2.0 * difference, Math_TAU) - difference;
return p_from + distance * p_weight;
}
inline float lerp_angle(float p_from, float p_to, float p_weight) {
float difference = fmod(p_to - p_from, (float)Math_TAU);
float distance = fmod(2.0f * difference, (float)Math_TAU) - difference;
return p_from + distance * p_weight;
}
template <typename T>
inline T clamp(T x, T minv, T maxv) {
if (x < minv) {
return minv;
}
if (x > maxv) {
return maxv;
}
return x;
}
template <typename T>
inline T min(T a, T b) {
return a < b ? a : b;
}
template <typename T>
inline T max(T a, T b) {
return a > b ? a : b;
}
template <typename T>
inline T sign(T x) {
return static_cast<T>(x < 0 ? -1 : 1);
}
inline double deg2rad(double p_y) {
return p_y * Math_PI / 180.0;
}
inline float deg2rad(float p_y) {
return p_y * static_cast<float>(Math_PI) / 180.f;
}
inline double rad2deg(double p_y) {
return p_y * 180.0 / Math_PI;
}
inline float rad2deg(float p_y) {
return p_y * 180.f / static_cast<float>(Math_PI);
}
inline double inverse_lerp(double p_from, double p_to, double p_value) {
return (p_value - p_from) / (p_to - p_from);
}
inline float inverse_lerp(float p_from, float p_to, float p_value) {
return (p_value - p_from) / (p_to - p_from);
}
inline double range_lerp(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
return Mathp::lerp(p_ostart, p_ostop, Mathp::inverse_lerp(p_istart, p_istop, p_value));
}
inline float range_lerp(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
return Mathp::lerp(p_ostart, p_ostop, Mathp::inverse_lerp(p_istart, p_istop, p_value));
}
inline bool is_equal_approx(real_t a, real_t b) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
real_t tolerance = CMP_EPSILON * std::abs(a);
if (tolerance < CMP_EPSILON) {
tolerance = CMP_EPSILON;
}
return std::abs(a - b) < tolerance;
}
inline bool is_equal_approx(real_t a, real_t b, real_t tolerance) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
return std::abs(a - b) < tolerance;
}
inline bool is_zero_approx(real_t s) {
return std::abs(s) < CMP_EPSILON;
}
inline double smoothstep(double p_from, double p_to, double p_weight) {
if (is_equal_approx(static_cast<real_t>(p_from), static_cast<real_t>(p_to))) {
return p_from;
}
double x = clamp((p_weight - p_from) / (p_to - p_from), 0.0, 1.0);
return x * x * (3.0 - 2.0 * x);
}
inline float smoothstep(float p_from, float p_to, float p_weight) {
if (is_equal_approx(p_from, p_to)) {
return p_from;
}
float x = clamp((p_weight - p_from) / (p_to - p_from), 0.0f, 1.0f);
return x * x * (3.0f - 2.0f * x);
}
inline double move_toward(double p_from, double p_to, double p_delta) {
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}
inline float move_toward(float p_from, float p_to, float p_delta) {
return std::abs(p_to - p_from) <= p_delta ? p_to : p_from + sign(p_to - p_from) * p_delta;
}
inline double linear2db(double p_linear) {
return log(p_linear) * 8.6858896380650365530225783783321;
}
inline float linear2db(float p_linear) {
return log(p_linear) * 8.6858896380650365530225783783321f;
}
inline double db2linear(double p_db) {
return exp(p_db * 0.11512925464970228420089957273422);
}
inline float db2linear(float p_db) {
return exp(p_db * 0.11512925464970228420089957273422f);
}
inline double round(double p_val) {
return (p_val >= 0) ? floor(p_val + 0.5) : -floor(-p_val + 0.5);
}
inline float round(float p_val) {
return (p_val >= 0) ? floor(p_val + 0.5f) : -floor(-p_val + 0.5f);
}
inline int64_t wrapi(int64_t value, int64_t min, int64_t max) {
int64_t range = max - min;
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
}
inline float wrapf(real_t value, real_t min, real_t max) {
const real_t range = max - min;
return is_zero_approx(range) ? min : value - (range * floor((value - min) / range));
}
inline float stepify(float p_value, float p_step) {
if (p_step != 0) {
p_value = floor(p_value / p_step + 0.5f) * p_step;
}
return p_value;
}
inline double stepify(double p_value, double p_step) {
if (p_step != 0) {
p_value = floor(p_value / p_step + 0.5) * p_step;
}
return p_value;
}
inline unsigned int next_power_of_2(unsigned int x) {
if (x == 0)
return 0;
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
} // namespace Math
} // namespace godot
#endif // GODOT_MATH_H