mirror of
https://github.com/Relintai/gdnative_cpp.git
synced 2025-01-14 15:31:27 +01:00
459 lines
12 KiB
C++
459 lines
12 KiB
C++
/*************************************************************************/
|
|
/* Basis.hpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef BASIS_H
|
|
#define BASIS_H
|
|
|
|
#include <gdn/basis.h>
|
|
|
|
#include "Defs.hpp"
|
|
|
|
#include "Vector3.hpp"
|
|
|
|
namespace godot {
|
|
|
|
class Quaternion;
|
|
|
|
class Basis {
|
|
private:
|
|
static const Basis IDENTITY;
|
|
static const Basis FLIP_X;
|
|
static const Basis FLIP_Y;
|
|
static const Basis FLIP_Z;
|
|
|
|
// This helper template is for mimicking the behavior difference between the engine
|
|
// and script interfaces that logically script sees matrices as column major, while
|
|
// the engine stores them in row major to efficiently take advantage of SIMD
|
|
// instructions in case of matrix-vector multiplications.
|
|
// With this helper template native scripts see the data as if it was column major
|
|
// without actually transposing the basis matrix at the script-engine boundary.
|
|
template <int column>
|
|
class ColumnVector3 {
|
|
private:
|
|
template <int column1, int component>
|
|
class ColumnVectorComponent {
|
|
private:
|
|
Vector3 elements[3];
|
|
|
|
protected:
|
|
inline ColumnVectorComponent<column1, component> &operator=(const ColumnVectorComponent<column1, component> &p_value) {
|
|
return *this = real_t(p_value);
|
|
}
|
|
|
|
inline ColumnVectorComponent(const ColumnVectorComponent<column1, component> &p_value) {
|
|
*this = real_t(p_value);
|
|
}
|
|
|
|
inline ColumnVectorComponent<column1, component> &operator=(const real_t &p_value) {
|
|
elements[component][column1] = p_value;
|
|
return *this;
|
|
}
|
|
|
|
inline operator real_t() const {
|
|
return elements[component][column1];
|
|
}
|
|
};
|
|
|
|
public:
|
|
enum Axis {
|
|
AXIS_X,
|
|
AXIS_Y,
|
|
AXIS_Z,
|
|
};
|
|
|
|
union {
|
|
ColumnVectorComponent<column, 0> x;
|
|
ColumnVectorComponent<column, 1> y;
|
|
ColumnVectorComponent<column, 2> z;
|
|
|
|
Vector3 elements[3]; // Not for direct access, use [] operator instead
|
|
};
|
|
|
|
inline ColumnVector3<column> &operator=(const ColumnVector3<column> &p_value) {
|
|
return *this = Vector3(p_value);
|
|
}
|
|
|
|
inline ColumnVector3(const ColumnVector3<column> &p_value) {
|
|
*this = Vector3(p_value);
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator=(const Vector3 &p_value) {
|
|
elements[0][column] = p_value.x;
|
|
elements[1][column] = p_value.y;
|
|
elements[2][column] = p_value.z;
|
|
return *this;
|
|
}
|
|
|
|
inline operator Vector3() const {
|
|
return Vector3(elements[0][column], elements[1][column], elements[2][column]);
|
|
}
|
|
|
|
// Unfortunately, we also need to replicate the other interfaces of Vector3 in
|
|
// order for being able to directly operate on these "meta-Vector3" objects without
|
|
// an explicit cast or an intermediate assignment to a real Vector3 object.
|
|
|
|
inline const real_t &operator[](int p_axis) const {
|
|
return elements[p_axis][column];
|
|
}
|
|
|
|
inline real_t &operator[](int p_axis) {
|
|
return elements[p_axis][column];
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator+=(const Vector3 &p_v) {
|
|
return *this = *this + p_v;
|
|
}
|
|
|
|
inline Vector3 operator+(const Vector3 &p_v) const {
|
|
return Vector3(*this) + p_v;
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator-=(const Vector3 &p_v) {
|
|
return *this = *this - p_v;
|
|
}
|
|
|
|
inline Vector3 operator-(const Vector3 &p_v) const {
|
|
return Vector3(*this) - p_v;
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator*=(const Vector3 &p_v) {
|
|
return *this = *this * p_v;
|
|
}
|
|
|
|
inline Vector3 operator*(const Vector3 &p_v) const {
|
|
return Vector3(*this) * p_v;
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator/=(const Vector3 &p_v) {
|
|
return *this = *this / p_v;
|
|
}
|
|
|
|
inline Vector3 operator/(const Vector3 &p_v) const {
|
|
return Vector3(*this) / p_v;
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator*=(real_t p_scalar) {
|
|
return *this = *this * p_scalar;
|
|
}
|
|
|
|
inline Vector3 operator*(real_t p_scalar) const {
|
|
return Vector3(*this) * p_scalar;
|
|
}
|
|
|
|
inline ColumnVector3<column> &operator/=(real_t p_scalar) {
|
|
return *this = *this / p_scalar;
|
|
}
|
|
|
|
inline Vector3 operator/(real_t p_scalar) const {
|
|
return Vector3(*this) / p_scalar;
|
|
}
|
|
|
|
inline Vector3 operator-() const {
|
|
return -Vector3(*this);
|
|
}
|
|
|
|
inline bool operator==(const Vector3 &p_v) const {
|
|
return Vector3(*this) == p_v;
|
|
}
|
|
|
|
inline bool operator!=(const Vector3 &p_v) const {
|
|
return Vector3(*this) != p_v;
|
|
}
|
|
|
|
inline bool operator<(const Vector3 &p_v) const {
|
|
return Vector3(*this) < p_v;
|
|
}
|
|
|
|
inline bool operator<=(const Vector3 &p_v) const {
|
|
return Vector3(*this) <= p_v;
|
|
}
|
|
|
|
inline Vector3 abs() const {
|
|
return Vector3(*this).abs();
|
|
}
|
|
|
|
inline Vector3 ceil() const {
|
|
return Vector3(*this).ceil();
|
|
}
|
|
|
|
inline Vector3 cross(const Vector3 &b) const {
|
|
return Vector3(*this).cross(b);
|
|
}
|
|
|
|
inline Vector3 linear_interpolate(const Vector3 &p_b, real_t p_t) const {
|
|
return Vector3(*this).linear_interpolate(p_b, p_t);
|
|
}
|
|
|
|
inline Vector3 cubic_interpolate(const Vector3 &b, const Vector3 &pre_a, const Vector3 &post_b, const real_t t) const {
|
|
return Vector3(*this).cubic_interpolate(b, pre_a, post_b, t);
|
|
}
|
|
|
|
inline Vector3 bounce(const Vector3 &p_normal) const {
|
|
return Vector3(*this).bounce(p_normal);
|
|
}
|
|
|
|
inline real_t length() const {
|
|
return Vector3(*this).length();
|
|
}
|
|
|
|
inline real_t length_squared() const {
|
|
return Vector3(*this).length_squared();
|
|
}
|
|
|
|
inline real_t distance_squared_to(const Vector3 &b) const {
|
|
return Vector3(*this).distance_squared_to(b);
|
|
}
|
|
|
|
inline real_t distance_to(const Vector3 &b) const {
|
|
return Vector3(*this).distance_to(b);
|
|
}
|
|
|
|
inline real_t dot(const Vector3 &b) const {
|
|
return Vector3(*this).dot(b);
|
|
}
|
|
|
|
inline real_t angle_to(const Vector3 &b) const {
|
|
return Vector3(*this).angle_to(b);
|
|
}
|
|
|
|
inline Vector3 floor() const {
|
|
return Vector3(*this).floor();
|
|
}
|
|
|
|
inline Vector3 inverse() const {
|
|
return Vector3(*this).inverse();
|
|
}
|
|
|
|
inline bool is_normalized() const {
|
|
return Vector3(*this).is_normalized();
|
|
}
|
|
|
|
inline Basis outer(const Vector3 &b) const {
|
|
return Vector3(*this).outer(b);
|
|
}
|
|
|
|
inline int max_axis() const {
|
|
return Vector3(*this).max_axis();
|
|
}
|
|
|
|
inline int min_axis() const {
|
|
return Vector3(*this).min_axis();
|
|
}
|
|
|
|
inline void normalize() {
|
|
Vector3 v = *this;
|
|
v.normalize();
|
|
*this = v;
|
|
}
|
|
|
|
inline Vector3 normalized() const {
|
|
return Vector3(*this).normalized();
|
|
}
|
|
|
|
inline Vector3 reflect(const Vector3 &by) const {
|
|
return Vector3(*this).reflect(by);
|
|
}
|
|
|
|
inline Vector3 rotated(const Vector3 &axis, const real_t phi) const {
|
|
return Vector3(*this).rotated(axis, phi);
|
|
}
|
|
|
|
inline void rotate(const Vector3 &p_axis, real_t p_phi) {
|
|
Vector3 v = *this;
|
|
v.rotate(p_axis, p_phi);
|
|
*this = v;
|
|
}
|
|
|
|
inline Vector3 slide(const Vector3 &by) const {
|
|
return Vector3(*this).slide(by);
|
|
}
|
|
|
|
inline void snap(real_t p_val) {
|
|
Vector3 v = *this;
|
|
v.snap(p_val);
|
|
*this = v;
|
|
}
|
|
|
|
inline Vector3 snapped(const float by) {
|
|
return Vector3(*this).snapped(by);
|
|
}
|
|
|
|
inline operator String() const {
|
|
return String(Vector3(*this));
|
|
}
|
|
};
|
|
|
|
public:
|
|
union {
|
|
ColumnVector3<0> x;
|
|
ColumnVector3<1> y;
|
|
ColumnVector3<2> z;
|
|
|
|
Vector3 elements[3]; // Not for direct access, use [] operator instead
|
|
};
|
|
|
|
inline Basis(const Basis &p_basis) {
|
|
elements[0] = p_basis.elements[0];
|
|
elements[1] = p_basis.elements[1];
|
|
elements[2] = p_basis.elements[2];
|
|
}
|
|
|
|
inline Basis &operator=(const Basis &p_basis) {
|
|
elements[0] = p_basis.elements[0];
|
|
elements[1] = p_basis.elements[1];
|
|
elements[2] = p_basis.elements[2];
|
|
return *this;
|
|
}
|
|
|
|
Basis(const Quaternion &p_quaternion); // euler
|
|
Basis(const Vector3 &p_euler); // euler
|
|
Basis(const Vector3 &p_axis, real_t p_phi);
|
|
|
|
Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2);
|
|
|
|
Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
|
|
|
|
Basis();
|
|
|
|
const Vector3 operator[](int axis) const {
|
|
return get_axis(axis);
|
|
}
|
|
|
|
ColumnVector3<0> &operator[](int axis) {
|
|
// We need to do a little pointer magic to get this to work, because the
|
|
// ColumnVector3 template takes the axis as a template parameter.
|
|
// Don't touch this unless you're sure what you're doing!
|
|
return (reinterpret_cast<Basis *>(reinterpret_cast<real_t *>(this) + axis))->x;
|
|
}
|
|
|
|
void invert();
|
|
|
|
bool isequal_approx(const Basis &a, const Basis &b) const;
|
|
|
|
bool is_orthogonal() const;
|
|
|
|
bool is_rotation() const;
|
|
|
|
void transpose();
|
|
|
|
Basis inverse() const;
|
|
|
|
Basis transposed() const;
|
|
|
|
real_t determinant() const;
|
|
|
|
Vector3 get_axis(int p_axis) const;
|
|
|
|
void set_axis(int p_axis, const Vector3 &p_value);
|
|
|
|
void rotate(const Vector3 &p_axis, real_t p_phi);
|
|
|
|
Basis rotated(const Vector3 &p_axis, real_t p_phi) const;
|
|
|
|
void scale(const Vector3 &p_scale);
|
|
|
|
Basis scaled(const Vector3 &p_scale) const;
|
|
|
|
Vector3 get_scale() const;
|
|
|
|
Basis slerp(Basis b, float t) const;
|
|
|
|
Vector3 get_euler_xyz() const;
|
|
void set_euler_xyz(const Vector3 &p_euler);
|
|
Vector3 get_euler_yxz() const;
|
|
void set_euler_yxz(const Vector3 &p_euler);
|
|
|
|
inline Vector3 get_euler() const { return get_euler_yxz(); }
|
|
inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
|
|
|
|
// transposed dot products
|
|
real_t tdotx(const Vector3 &v) const;
|
|
real_t tdoty(const Vector3 &v) const;
|
|
real_t tdotz(const Vector3 &v) const;
|
|
|
|
bool operator==(const Basis &p_matrix) const;
|
|
|
|
bool operator!=(const Basis &p_matrix) const;
|
|
|
|
Vector3 xform(const Vector3 &p_vector) const;
|
|
|
|
Vector3 xform_inv(const Vector3 &p_vector) const;
|
|
void operator*=(const Basis &p_matrix);
|
|
|
|
Basis operator*(const Basis &p_matrix) const;
|
|
|
|
void operator+=(const Basis &p_matrix);
|
|
|
|
Basis operator+(const Basis &p_matrix) const;
|
|
|
|
void operator-=(const Basis &p_matrix);
|
|
|
|
Basis operator-(const Basis &p_matrix) const;
|
|
|
|
void operator*=(real_t p_val);
|
|
|
|
Basis operator*(real_t p_val) const;
|
|
|
|
int get_orthogonal_index() const; // down below
|
|
|
|
void set_orthogonal_index(int p_index); // down below
|
|
|
|
operator String() const;
|
|
|
|
void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const;
|
|
|
|
/* create / set */
|
|
|
|
void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz);
|
|
|
|
Vector3 get_column(int i) const;
|
|
|
|
Vector3 get_row(int i) const;
|
|
Vector3 get_main_diagonal() const;
|
|
|
|
void set_row(int i, const Vector3 &p_row);
|
|
|
|
Basis transpose_xform(const Basis &m) const;
|
|
|
|
void orthonormalize();
|
|
|
|
Basis orthonormalized() const;
|
|
|
|
bool is_symmetric() const;
|
|
|
|
Basis diagonalize();
|
|
|
|
operator Quaternion() const;
|
|
};
|
|
|
|
} // namespace godot
|
|
|
|
#endif // BASIS_H
|