mirror of
https://github.com/Relintai/gdnative_cpp.git
synced 2025-01-12 15:21:18 +01:00
307 lines
7.9 KiB
C++
307 lines
7.9 KiB
C++
/*************************************************************************/
|
|
/* Vector2.hpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef VECTOR2_H
|
|
#define VECTOR2_H
|
|
|
|
#include <gdn/vector2.h>
|
|
|
|
#include "Defs.hpp"
|
|
|
|
#include <Math.hpp>
|
|
|
|
namespace godot {
|
|
|
|
class String;
|
|
|
|
struct Vector2 {
|
|
enum Axis {
|
|
AXIS_X = 0,
|
|
AXIS_Y,
|
|
AXIS_COUNT
|
|
};
|
|
|
|
static const Vector2 ZERO;
|
|
static const Vector2 ONE;
|
|
static const Vector2 INF;
|
|
|
|
// Coordinate system of the 2D engine
|
|
static const Vector2 LEFT;
|
|
static const Vector2 RIGHT;
|
|
static const Vector2 UP;
|
|
static const Vector2 DOWN;
|
|
|
|
union {
|
|
real_t x;
|
|
real_t width;
|
|
};
|
|
union {
|
|
real_t y;
|
|
real_t height;
|
|
};
|
|
|
|
inline Vector2(real_t p_x, real_t p_y) {
|
|
x = p_x;
|
|
y = p_y;
|
|
}
|
|
|
|
inline Vector2() {
|
|
x = 0;
|
|
y = 0;
|
|
}
|
|
|
|
inline real_t &operator[](int p_idx) {
|
|
return p_idx ? y : x;
|
|
}
|
|
|
|
inline const real_t &operator[](int p_idx) const {
|
|
return p_idx ? y : x;
|
|
}
|
|
|
|
inline Vector2 operator+(const Vector2 &p_v) const {
|
|
return Vector2(x + p_v.x, y + p_v.y);
|
|
}
|
|
|
|
inline void operator+=(const Vector2 &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
|
|
inline Vector2 operator-(const Vector2 &p_v) const {
|
|
return Vector2(x - p_v.x, y - p_v.y);
|
|
}
|
|
|
|
inline void operator-=(const Vector2 &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
inline Vector2 operator*(const Vector2 &p_v1) const {
|
|
return Vector2(x * p_v1.x, y * p_v1.y);
|
|
}
|
|
|
|
inline Vector2 operator*(const real_t &rvalue) const {
|
|
return Vector2(x * rvalue, y * rvalue);
|
|
}
|
|
|
|
inline void operator*=(const real_t &rvalue) {
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
}
|
|
|
|
inline void operator*=(const Vector2 &rvalue) {
|
|
*this = *this * rvalue;
|
|
}
|
|
|
|
inline Vector2 operator/(const Vector2 &p_v1) const {
|
|
return Vector2(x / p_v1.x, y / p_v1.y);
|
|
}
|
|
|
|
inline Vector2 operator/(const real_t &rvalue) const {
|
|
return Vector2(x / rvalue, y / rvalue);
|
|
}
|
|
|
|
inline void operator/=(const real_t &rvalue) {
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
}
|
|
|
|
inline Vector2 operator-() const {
|
|
return Vector2(-x, -y);
|
|
}
|
|
|
|
bool operator==(const Vector2 &p_vec2) const;
|
|
|
|
bool operator!=(const Vector2 &p_vec2) const;
|
|
|
|
inline bool operator<(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y < p_vec2.y) : (x < p_vec2.x); }
|
|
inline bool operator<=(const Vector2 &p_vec2) const { return (x == p_vec2.x) ? (y <= p_vec2.y) : (x <= p_vec2.x); }
|
|
|
|
inline void normalize() {
|
|
real_t l = x * x + y * y;
|
|
if (l != 0) {
|
|
l = sqrt(l);
|
|
x /= l;
|
|
y /= l;
|
|
}
|
|
}
|
|
|
|
inline Vector2 normalized() const {
|
|
Vector2 v = *this;
|
|
v.normalize();
|
|
return v;
|
|
}
|
|
|
|
inline real_t length() const {
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
|
|
inline real_t length_squared() const {
|
|
return x * x + y * y;
|
|
}
|
|
|
|
inline real_t distance_to(const Vector2 &p_vector2) const {
|
|
return sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
|
|
}
|
|
|
|
inline real_t distance_squared_to(const Vector2 &p_vector2) const {
|
|
return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
|
|
}
|
|
|
|
inline real_t angle_to(const Vector2 &p_vector2) const {
|
|
return atan2(cross(p_vector2), dot(p_vector2));
|
|
}
|
|
|
|
inline real_t angle_to_point(const Vector2 &p_vector2) const {
|
|
return atan2(y - p_vector2.y, x - p_vector2.x);
|
|
}
|
|
|
|
inline Vector2 direction_to(const Vector2 &p_b) const {
|
|
Vector2 ret(p_b.x - x, p_b.y - y);
|
|
ret.normalize();
|
|
return ret;
|
|
}
|
|
|
|
inline real_t dot(const Vector2 &p_other) const {
|
|
return x * p_other.x + y * p_other.y;
|
|
}
|
|
|
|
inline real_t cross(const Vector2 &p_other) const {
|
|
return x * p_other.y - y * p_other.x;
|
|
}
|
|
|
|
inline Vector2 cross(real_t p_other) const {
|
|
return Vector2(p_other * y, -p_other * x);
|
|
}
|
|
|
|
Vector2 project(const Vector2 &p_vec) const;
|
|
|
|
Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
|
|
|
|
Vector2 clamped(real_t p_len) const;
|
|
|
|
static inline Vector2 linear_interpolate(const Vector2 &p_a, const Vector2 &p_b, real_t p_t) {
|
|
Vector2 res = p_a;
|
|
res.x += (p_t * (p_b.x - p_a.x));
|
|
res.y += (p_t * (p_b.y - p_a.y));
|
|
return res;
|
|
}
|
|
|
|
inline Vector2 linear_interpolate(const Vector2 &p_b, real_t p_t) const {
|
|
Vector2 res = *this;
|
|
res.x += (p_t * (p_b.x - x));
|
|
res.y += (p_t * (p_b.y - y));
|
|
return res;
|
|
}
|
|
|
|
Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const;
|
|
|
|
Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const {
|
|
Vector2 v = *this;
|
|
Vector2 vd = p_to - v;
|
|
real_t len = vd.length();
|
|
return len <= p_delta || len < CMP_EPSILON ? p_to : v + vd / len * p_delta;
|
|
}
|
|
|
|
inline Vector2 slide(const Vector2 &p_vec) const {
|
|
return p_vec - *this * this->dot(p_vec);
|
|
}
|
|
|
|
inline Vector2 bounce(const Vector2 &p_normal) const {
|
|
return -reflect(p_normal);
|
|
}
|
|
|
|
inline Vector2 reflect(const Vector2 &p_normal) const {
|
|
return -(*this - p_normal * this->dot(p_normal) * 2.0);
|
|
}
|
|
|
|
inline real_t angle() const {
|
|
return atan2(y, x);
|
|
}
|
|
|
|
inline void set_rotation(real_t p_radians) {
|
|
x = cosf(p_radians);
|
|
y = sinf(p_radians);
|
|
}
|
|
|
|
inline Vector2 abs() const {
|
|
return Vector2(fabs(x), fabs(y));
|
|
}
|
|
|
|
inline Vector2 rotated(real_t p_by) const {
|
|
Vector2 v;
|
|
v.set_rotation(angle() + p_by);
|
|
v *= length();
|
|
return v;
|
|
}
|
|
|
|
inline Vector2 tangent() const {
|
|
return Vector2(y, -x);
|
|
}
|
|
|
|
inline Vector2 floor() const {
|
|
return Vector2(Math::floor(x), Math::floor(y));
|
|
}
|
|
|
|
inline Vector2 snapped(const Vector2 &p_by) const {
|
|
return Vector2(
|
|
Math::stepify(x, p_by.x),
|
|
Math::stepify(y, p_by.y));
|
|
}
|
|
|
|
inline real_t aspect() const { return width / height; }
|
|
|
|
operator String() const;
|
|
};
|
|
|
|
inline Vector2 operator*(real_t p_scalar, const Vector2 &p_vec) {
|
|
return p_vec * p_scalar;
|
|
}
|
|
|
|
namespace Math {
|
|
|
|
// Convenience, since they exist in GDScript
|
|
|
|
inline Vector2 cartesian2polar(Vector2 v) {
|
|
return Vector2(Math::sqrt(v.x * v.x + v.y * v.y), Math::atan2(v.y, v.x));
|
|
}
|
|
|
|
inline Vector2 polar2cartesian(Vector2 v) {
|
|
// x == radius
|
|
// y == angle
|
|
return Vector2(v.x * Math::cos(v.y), v.x * Math::sin(v.y));
|
|
}
|
|
|
|
} // namespace Math
|
|
|
|
} // namespace godot
|
|
|
|
#endif // VECTOR2_H
|