mirror of
https://github.com/Relintai/gdnative_cpp.git
synced 2024-11-20 10:57:23 +01:00
Rename Quat to Quaternion.
This commit is contained in:
parent
cbb15f8b7d
commit
8f369a0980
@ -39,7 +39,7 @@
|
||||
|
||||
namespace godot {
|
||||
|
||||
class Quat;
|
||||
class Quaternion;
|
||||
|
||||
class Basis {
|
||||
private:
|
||||
@ -332,7 +332,7 @@ public:
|
||||
return *this;
|
||||
}
|
||||
|
||||
Basis(const Quat &p_quaternion); // euler
|
||||
Basis(const Quaternion &p_quaternion); // euler
|
||||
Basis(const Vector3 &p_euler); // euler
|
||||
Basis(const Vector3 &p_axis, real_t p_phi);
|
||||
|
||||
@ -450,7 +450,7 @@ public:
|
||||
|
||||
Basis diagonalize();
|
||||
|
||||
operator Quat() const;
|
||||
operator Quaternion() const;
|
||||
};
|
||||
|
||||
} // namespace godot
|
||||
|
@ -41,7 +41,7 @@
|
||||
#include "NodePath.hpp"
|
||||
#include "Plane.hpp"
|
||||
#include "PoolArrays.hpp"
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
#include "RID.hpp"
|
||||
#include "Rect2.hpp"
|
||||
#include "String.hpp"
|
||||
|
@ -423,18 +423,18 @@ struct _PropertyDefaultGetFunc {
|
||||
template <class T, class P>
|
||||
void register_property(const char *name, P(T::*var), P default_value,
|
||||
pandemonium_method_rpc_mode rpc_mode = PANDEMONIUM_METHOD_RPC_MODE_DISABLED,
|
||||
pandemonium_property_usage_flags usage = GODOT_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = GODOT_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
pandemonium_property_usage_flags usage = PANDEMONIUM_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = PANDEMONIUM_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
static_assert(T::___CLASS_IS_SCRIPT, "This function must only be used on custom classes");
|
||||
|
||||
Variant def_val = default_value;
|
||||
|
||||
usage = (pandemonium_property_usage_flags)((int)usage | GODOT_PROPERTY_USAGE_SCRIPT_VARIABLE);
|
||||
usage = (pandemonium_property_usage_flags)((int)usage | PANDEMONIUM_PROPERTY_USAGE_SCRIPT_VARIABLE);
|
||||
|
||||
if (def_val.get_type() == Variant::OBJECT) {
|
||||
Object *o = detail::get_wrapper<Object>(def_val.operator pandemonium_object *());
|
||||
if (o && o->is_class("Resource")) {
|
||||
hint = (pandemonium_property_hint)((int)hint | GODOT_PROPERTY_HINT_RESOURCE_TYPE);
|
||||
hint = (pandemonium_property_hint)((int)hint | PANDEMONIUM_PROPERTY_HINT_RESOURCE_TYPE);
|
||||
hint_string = o->get_class();
|
||||
}
|
||||
}
|
||||
@ -479,8 +479,8 @@ void register_property(const char *name, P(T::*var), P default_value,
|
||||
template <class T, class P>
|
||||
void register_property(const char *name, void (T::*setter)(P), P (T::*getter)(), P default_value,
|
||||
pandemonium_method_rpc_mode rpc_mode = PANDEMONIUM_METHOD_RPC_MODE_DISABLED,
|
||||
pandemonium_property_usage_flags usage = GODOT_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = GODOT_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
pandemonium_property_usage_flags usage = PANDEMONIUM_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = PANDEMONIUM_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
static_assert(T::___CLASS_IS_SCRIPT, "This function must only be used on custom classes");
|
||||
|
||||
Variant def_val = default_value;
|
||||
@ -522,8 +522,8 @@ void register_property(const char *name, void (T::*setter)(P), P (T::*getter)(),
|
||||
template <class T, class P>
|
||||
void register_property(const char *name, void (T::*setter)(P), P (T::*getter)() const, P default_value,
|
||||
pandemonium_method_rpc_mode rpc_mode = PANDEMONIUM_METHOD_RPC_MODE_DISABLED,
|
||||
pandemonium_property_usage_flags usage = GODOT_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = GODOT_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
pandemonium_property_usage_flags usage = PANDEMONIUM_PROPERTY_USAGE_DEFAULT,
|
||||
pandemonium_property_hint hint = PANDEMONIUM_PROPERTY_HINT_NONE, String hint_string = "") {
|
||||
register_property(name, setter, (P(T::*)())getter, default_value, rpc_mode, usage, hint, hint_string);
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*************************************************************************/
|
||||
/* Quat.hpp */
|
||||
/* Quaternion.hpp */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
@ -39,9 +39,9 @@
|
||||
|
||||
namespace godot {
|
||||
|
||||
class Quat {
|
||||
class Quaternion {
|
||||
public:
|
||||
static const Quat IDENTITY;
|
||||
static const Quaternion IDENTITY;
|
||||
|
||||
real_t x, y, z, w;
|
||||
|
||||
@ -50,11 +50,11 @@ public:
|
||||
|
||||
void normalize();
|
||||
|
||||
Quat normalized() const;
|
||||
Quaternion normalized() const;
|
||||
|
||||
bool is_normalized() const;
|
||||
|
||||
Quat inverse() const;
|
||||
Quaternion inverse() const;
|
||||
|
||||
void set_euler_xyz(const Vector3 &p_euler);
|
||||
Vector3 get_euler_xyz() const;
|
||||
@ -64,37 +64,37 @@ public:
|
||||
inline void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
|
||||
inline Vector3 get_euler() const { return get_euler_yxz(); }
|
||||
|
||||
real_t dot(const Quat &q) const;
|
||||
real_t dot(const Quaternion &q) const;
|
||||
|
||||
Quat slerp(const Quat &q, const real_t &t) const;
|
||||
Quaternion slerp(const Quaternion &q, const real_t &t) const;
|
||||
|
||||
Quat slerpni(const Quat &q, const real_t &t) const;
|
||||
Quaternion slerpni(const Quaternion &q, const real_t &t) const;
|
||||
|
||||
Quat cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const;
|
||||
Quaternion cubic_slerp(const Quaternion &q, const Quaternion &prep, const Quaternion &postq, const real_t &t) const;
|
||||
|
||||
void get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const;
|
||||
|
||||
void set_axis_angle(const Vector3 &axis, const float angle);
|
||||
|
||||
void operator*=(const Quat &q);
|
||||
Quat operator*(const Quat &q) const;
|
||||
void operator*=(const Quaternion &q);
|
||||
Quaternion operator*(const Quaternion &q) const;
|
||||
|
||||
Quat operator*(const Vector3 &v) const;
|
||||
Quaternion operator*(const Vector3 &v) const;
|
||||
|
||||
Vector3 xform(const Vector3 &v) const;
|
||||
|
||||
void operator+=(const Quat &q);
|
||||
void operator-=(const Quat &q);
|
||||
void operator+=(const Quaternion &q);
|
||||
void operator-=(const Quaternion &q);
|
||||
void operator*=(const real_t &s);
|
||||
void operator/=(const real_t &s);
|
||||
Quat operator+(const Quat &q2) const;
|
||||
Quat operator-(const Quat &q2) const;
|
||||
Quat operator-() const;
|
||||
Quat operator*(const real_t &s) const;
|
||||
Quat operator/(const real_t &s) const;
|
||||
Quaternion operator+(const Quaternion &q2) const;
|
||||
Quaternion operator-(const Quaternion &q2) const;
|
||||
Quaternion operator-() const;
|
||||
Quaternion operator*(const real_t &s) const;
|
||||
Quaternion operator/(const real_t &s) const;
|
||||
|
||||
bool operator==(const Quat &p_quaternion) const;
|
||||
bool operator!=(const Quat &p_quaternion) const;
|
||||
bool operator==(const Quaternion &p_quaternion) const;
|
||||
bool operator!=(const Quaternion &p_quaternion) const;
|
||||
|
||||
operator String() const;
|
||||
|
||||
@ -104,17 +104,17 @@ public:
|
||||
z = p_z;
|
||||
w = p_w;
|
||||
}
|
||||
inline Quat(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
|
||||
inline Quaternion(real_t p_x, real_t p_y, real_t p_z, real_t p_w) {
|
||||
x = p_x;
|
||||
y = p_y;
|
||||
z = p_z;
|
||||
w = p_w;
|
||||
}
|
||||
Quat(const Vector3 &axis, const real_t &angle);
|
||||
Quaternion(const Vector3 &axis, const real_t &angle);
|
||||
|
||||
Quat(const Vector3 &v0, const Vector3 &v1);
|
||||
Quaternion(const Vector3 &v0, const Vector3 &v1);
|
||||
|
||||
inline Quat() {
|
||||
inline Quaternion() {
|
||||
x = y = z = 0;
|
||||
w = 1;
|
||||
}
|
@ -84,8 +84,8 @@ public:
|
||||
static String md5(const uint8_t *p_md5);
|
||||
static String hex_encode_buffer(const uint8_t *p_buffer, int p_len);
|
||||
|
||||
wchar_t &operator[](const int idx);
|
||||
wchar_t operator[](const int idx) const;
|
||||
char32_t &operator[](const int idx);
|
||||
char32_t operator[](const int idx) const;
|
||||
|
||||
void operator=(const String &s);
|
||||
void operator=(String &&s);
|
||||
@ -93,7 +93,7 @@ public:
|
||||
bool operator!=(const String &s) const;
|
||||
String operator+(const String &s) const;
|
||||
void operator+=(const String &s);
|
||||
void operator+=(const wchar_t c);
|
||||
void operator+=(const char32_t c);
|
||||
bool operator<(const String &s) const;
|
||||
bool operator<=(const String &s) const;
|
||||
bool operator>(const String &s) const;
|
||||
@ -102,7 +102,7 @@ public:
|
||||
operator NodePath() const;
|
||||
|
||||
int length() const;
|
||||
const wchar_t *unicode_str() const;
|
||||
const char32_t *unicode_str() const;
|
||||
char *alloc_c_string() const;
|
||||
CharString utf8() const;
|
||||
CharString ascii(bool p_extended = false) const;
|
||||
|
@ -41,7 +41,7 @@
|
||||
#include "NodePath.hpp"
|
||||
#include "Plane.hpp"
|
||||
#include "PoolArrays.hpp"
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
#include "RID.hpp"
|
||||
#include "Rect2.hpp"
|
||||
#include "String.hpp"
|
||||
@ -203,7 +203,7 @@ public:
|
||||
|
||||
Variant(const godot::AABB &p_aabb);
|
||||
|
||||
Variant(const Quat &p_quaternion);
|
||||
Variant(const Quaternion &p_quaternion);
|
||||
|
||||
Variant(const Basis &p_transform);
|
||||
|
||||
@ -261,7 +261,7 @@ public:
|
||||
operator Vector3() const;
|
||||
operator Plane() const;
|
||||
operator godot::AABB() const;
|
||||
operator Quat() const;
|
||||
operator Quaternion() const;
|
||||
operator Basis() const;
|
||||
operator Transform() const;
|
||||
operator Transform2D() const;
|
||||
|
@ -30,7 +30,7 @@
|
||||
|
||||
#include "Basis.hpp"
|
||||
#include "Defs.hpp"
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
#include "Vector3.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
@ -172,7 +172,7 @@ Vector3 Basis::get_scale() const {
|
||||
// We are assuming M = R.S, and performing a polar decomposition to extract R and S.
|
||||
// FIXME: We eventually need a proper polar decomposition.
|
||||
// As a cheap workaround until then, to ensure that R is a proper rotation matrix with determinant +1
|
||||
// (such that it can be represented by a Quat or Euler angles), we absorb the sign flip into the scaling matrix.
|
||||
// (such that it can be represented by a Quaternion or Euler angles), we absorb the sign flip into the scaling matrix.
|
||||
// As such, it works in conjuction with get_rotation().
|
||||
real_t det_sign = determinant() > 0 ? 1 : -1;
|
||||
return det_sign * Vector3(
|
||||
@ -185,8 +185,8 @@ Vector3 Basis::get_scale() const {
|
||||
Basis Basis::slerp(Basis b, float t) const {
|
||||
ERR_FAIL_COND_V(!is_rotation(), Basis());
|
||||
ERR_FAIL_COND_V(!b.is_rotation(), Basis());
|
||||
Quat from(*this);
|
||||
Quat to(b);
|
||||
Quaternion from(*this);
|
||||
Quaternion to(b);
|
||||
return Basis(from.slerp(to, t));
|
||||
}
|
||||
|
||||
@ -636,11 +636,11 @@ Basis::Basis(const Vector3 &p_euler) {
|
||||
|
||||
} // namespace godot
|
||||
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
|
||||
namespace godot {
|
||||
|
||||
Basis::Basis(const Quat &p_quaternion) {
|
||||
Basis::Basis(const Quaternion &p_quaternion) {
|
||||
real_t d = p_quaternion.length_squared();
|
||||
real_t s = 2.0 / d;
|
||||
real_t xs = p_quaternion.x * s, ys = p_quaternion.y * s, zs = p_quaternion.z * s;
|
||||
@ -673,9 +673,9 @@ Basis::Basis(const Vector3 &p_axis, real_t p_phi) {
|
||||
elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
|
||||
}
|
||||
|
||||
Basis::operator Quat() const {
|
||||
Basis::operator Quaternion() const {
|
||||
//commenting this check because precision issues cause it to fail when it shouldn't
|
||||
//ERR_FAIL_COND_V(is_rotation() == false, Quat());
|
||||
//ERR_FAIL_COND_V(is_rotation() == false, Quaternion());
|
||||
|
||||
real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
|
||||
real_t temp[4];
|
||||
@ -704,7 +704,7 @@ Basis::operator Quat() const {
|
||||
temp[k] = (elements[k][i] + elements[i][k]) * s;
|
||||
}
|
||||
|
||||
return Quat(temp[0], temp[1], temp[2], temp[3]);
|
||||
return Quaternion(temp[0], temp[1], temp[2], temp[3]);
|
||||
}
|
||||
|
||||
} // namespace godot
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*************************************************************************/
|
||||
/* Quat.cpp */
|
||||
/* Quaternion.cpp */
|
||||
/*************************************************************************/
|
||||
/* This file is part of: */
|
||||
/* GODOT ENGINE */
|
||||
@ -28,7 +28,7 @@
|
||||
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||
/*************************************************************************/
|
||||
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
#include "Basis.hpp"
|
||||
#include "Defs.hpp"
|
||||
#include "Vector3.hpp"
|
||||
@ -37,13 +37,13 @@
|
||||
|
||||
namespace godot {
|
||||
|
||||
const Quat Quat::IDENTITY = Quat();
|
||||
const Quaternion Quaternion::IDENTITY = Quaternion();
|
||||
|
||||
// set_euler_xyz expects a vector containing the Euler angles in the format
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses XYZ convention (Z is the first rotation).
|
||||
void Quat::set_euler_xyz(const Vector3 &p_euler) {
|
||||
void Quaternion::set_euler_xyz(const Vector3 &p_euler) {
|
||||
real_t half_a1 = p_euler.x * 0.5;
|
||||
real_t half_a2 = p_euler.y * 0.5;
|
||||
real_t half_a3 = p_euler.z * 0.5;
|
||||
@ -69,7 +69,7 @@ void Quat::set_euler_xyz(const Vector3 &p_euler) {
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses XYZ convention (Z is the first rotation).
|
||||
Vector3 Quat::get_euler_xyz() const {
|
||||
Vector3 Quaternion::get_euler_xyz() const {
|
||||
Basis m(*this);
|
||||
return m.get_euler_xyz();
|
||||
}
|
||||
@ -78,7 +78,7 @@ Vector3 Quat::get_euler_xyz() const {
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses YXZ convention (Z is the first rotation).
|
||||
void Quat::set_euler_yxz(const Vector3 &p_euler) {
|
||||
void Quaternion::set_euler_yxz(const Vector3 &p_euler) {
|
||||
real_t half_a1 = p_euler.y * 0.5;
|
||||
real_t half_a2 = p_euler.x * 0.5;
|
||||
real_t half_a3 = p_euler.z * 0.5;
|
||||
@ -104,33 +104,33 @@ void Quat::set_euler_yxz(const Vector3 &p_euler) {
|
||||
// (ax,ay,az), where ax is the angle of rotation around x axis,
|
||||
// and similar for other axes.
|
||||
// This implementation uses YXZ convention (Z is the first rotation).
|
||||
Vector3 Quat::get_euler_yxz() const {
|
||||
Vector3 Quaternion::get_euler_yxz() const {
|
||||
Basis m(*this);
|
||||
return m.get_euler_yxz();
|
||||
}
|
||||
|
||||
real_t Quat::length() const {
|
||||
real_t Quaternion::length() const {
|
||||
return ::sqrt(length_squared());
|
||||
}
|
||||
|
||||
void Quat::normalize() {
|
||||
void Quaternion::normalize() {
|
||||
*this /= length();
|
||||
}
|
||||
|
||||
Quat Quat::normalized() const {
|
||||
Quaternion Quaternion::normalized() const {
|
||||
return *this / length();
|
||||
}
|
||||
|
||||
bool Quat::is_normalized() const {
|
||||
bool Quaternion::is_normalized() const {
|
||||
return std::abs(length_squared() - 1.0) < 0.00001;
|
||||
}
|
||||
|
||||
Quat Quat::inverse() const {
|
||||
return Quat(-x, -y, -z, w);
|
||||
Quaternion Quaternion::inverse() const {
|
||||
return Quaternion(-x, -y, -z, w);
|
||||
}
|
||||
|
||||
Quat Quat::slerp(const Quat &q, const real_t &t) const {
|
||||
Quat to1;
|
||||
Quaternion Quaternion::slerp(const Quaternion &q, const real_t &t) const {
|
||||
Quaternion to1;
|
||||
real_t omega, cosom, sinom, scale0, scale1;
|
||||
|
||||
// calc cosine
|
||||
@ -165,15 +165,15 @@ Quat Quat::slerp(const Quat &q, const real_t &t) const {
|
||||
scale1 = t;
|
||||
}
|
||||
// calculate final values
|
||||
return Quat(
|
||||
return Quaternion(
|
||||
scale0 * x + scale1 * to1.x,
|
||||
scale0 * y + scale1 * to1.y,
|
||||
scale0 * z + scale1 * to1.z,
|
||||
scale0 * w + scale1 * to1.w);
|
||||
}
|
||||
|
||||
Quat Quat::slerpni(const Quat &q, const real_t &t) const {
|
||||
const Quat &from = *this;
|
||||
Quaternion Quaternion::slerpni(const Quaternion &q, const real_t &t) const {
|
||||
const Quaternion &from = *this;
|
||||
|
||||
real_t dot = from.dot(q);
|
||||
|
||||
@ -185,28 +185,28 @@ Quat Quat::slerpni(const Quat &q, const real_t &t) const {
|
||||
newFactor = ::sin(t * theta) * sinT,
|
||||
invFactor = ::sin((1.0 - t) * theta) * sinT;
|
||||
|
||||
return Quat(invFactor * from.x + newFactor * q.x,
|
||||
return Quaternion(invFactor * from.x + newFactor * q.x,
|
||||
invFactor * from.y + newFactor * q.y,
|
||||
invFactor * from.z + newFactor * q.z,
|
||||
invFactor * from.w + newFactor * q.w);
|
||||
}
|
||||
|
||||
Quat Quat::cubic_slerp(const Quat &q, const Quat &prep, const Quat &postq, const real_t &t) const {
|
||||
Quaternion Quaternion::cubic_slerp(const Quaternion &q, const Quaternion &prep, const Quaternion &postq, const real_t &t) const {
|
||||
//the only way to do slerp :|
|
||||
real_t t2 = (1.0 - t) * t * 2;
|
||||
Quat sp = this->slerp(q, t);
|
||||
Quat sq = prep.slerpni(postq, t);
|
||||
Quaternion sp = this->slerp(q, t);
|
||||
Quaternion sq = prep.slerpni(postq, t);
|
||||
return sp.slerpni(sq, t2);
|
||||
}
|
||||
|
||||
void Quat::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
void Quaternion::get_axis_and_angle(Vector3 &r_axis, real_t &r_angle) const {
|
||||
r_angle = 2 * ::acos(w);
|
||||
r_axis.x = x / ::sqrt(1 - w * w);
|
||||
r_axis.y = y / ::sqrt(1 - w * w);
|
||||
r_axis.z = z / ::sqrt(1 - w * w);
|
||||
}
|
||||
|
||||
void Quat::set_axis_angle(const Vector3 &axis, const float angle) {
|
||||
void Quaternion::set_axis_angle(const Vector3 &axis, const float angle) {
|
||||
ERR_FAIL_COND(!axis.is_normalized());
|
||||
|
||||
real_t d = axis.length();
|
||||
@ -221,24 +221,24 @@ void Quat::set_axis_angle(const Vector3 &axis, const float angle) {
|
||||
}
|
||||
}
|
||||
|
||||
Quat Quat::operator*(const Vector3 &v) const {
|
||||
return Quat(w * v.x + y * v.z - z * v.y,
|
||||
Quaternion Quaternion::operator*(const Vector3 &v) const {
|
||||
return Quaternion(w * v.x + y * v.z - z * v.y,
|
||||
w * v.y + z * v.x - x * v.z,
|
||||
w * v.z + x * v.y - y * v.x,
|
||||
-x * v.x - y * v.y - z * v.z);
|
||||
}
|
||||
|
||||
Vector3 Quat::xform(const Vector3 &v) const {
|
||||
Quat q = *this * v;
|
||||
Vector3 Quaternion::xform(const Vector3 &v) const {
|
||||
Quaternion q = *this * v;
|
||||
q *= this->inverse();
|
||||
return Vector3(q.x, q.y, q.z);
|
||||
}
|
||||
|
||||
Quat::operator String() const {
|
||||
Quaternion::operator String() const {
|
||||
return String(); // @Todo
|
||||
}
|
||||
|
||||
Quat::Quat(const Vector3 &axis, const real_t &angle) {
|
||||
Quaternion::Quaternion(const Vector3 &axis, const real_t &angle) {
|
||||
real_t d = axis.length();
|
||||
if (d == 0)
|
||||
set(0, 0, 0, 0);
|
||||
@ -251,7 +251,7 @@ Quat::Quat(const Vector3 &axis, const real_t &angle) {
|
||||
}
|
||||
}
|
||||
|
||||
Quat::Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
|
||||
Quaternion::Quaternion(const Vector3 &v0, const Vector3 &v1) // shortest arc
|
||||
{
|
||||
Vector3 c = v0.cross(v1);
|
||||
real_t d = v0.dot(v1);
|
||||
@ -272,80 +272,80 @@ Quat::Quat(const Vector3 &v0, const Vector3 &v1) // shortest arc
|
||||
}
|
||||
}
|
||||
|
||||
real_t Quat::dot(const Quat &q) const {
|
||||
real_t Quaternion::dot(const Quaternion &q) const {
|
||||
return x * q.x + y * q.y + z * q.z + w * q.w;
|
||||
}
|
||||
|
||||
real_t Quat::length_squared() const {
|
||||
real_t Quaternion::length_squared() const {
|
||||
return dot(*this);
|
||||
}
|
||||
|
||||
void Quat::operator+=(const Quat &q) {
|
||||
void Quaternion::operator+=(const Quaternion &q) {
|
||||
x += q.x;
|
||||
y += q.y;
|
||||
z += q.z;
|
||||
w += q.w;
|
||||
}
|
||||
|
||||
void Quat::operator-=(const Quat &q) {
|
||||
void Quaternion::operator-=(const Quaternion &q) {
|
||||
x -= q.x;
|
||||
y -= q.y;
|
||||
z -= q.z;
|
||||
w -= q.w;
|
||||
}
|
||||
|
||||
void Quat::operator*=(const Quat &q) {
|
||||
void Quaternion::operator*=(const Quaternion &q) {
|
||||
set(w * q.x + x * q.w + y * q.z - z * q.y,
|
||||
w * q.y + y * q.w + z * q.x - x * q.z,
|
||||
w * q.z + z * q.w + x * q.y - y * q.x,
|
||||
w * q.w - x * q.x - y * q.y - z * q.z);
|
||||
}
|
||||
|
||||
void Quat::operator*=(const real_t &s) {
|
||||
void Quaternion::operator*=(const real_t &s) {
|
||||
x *= s;
|
||||
y *= s;
|
||||
z *= s;
|
||||
w *= s;
|
||||
}
|
||||
|
||||
void Quat::operator/=(const real_t &s) {
|
||||
void Quaternion::operator/=(const real_t &s) {
|
||||
*this *= 1.0 / s;
|
||||
}
|
||||
|
||||
Quat Quat::operator+(const Quat &q2) const {
|
||||
const Quat &q1 = *this;
|
||||
return Quat(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
|
||||
Quaternion Quaternion::operator+(const Quaternion &q2) const {
|
||||
const Quaternion &q1 = *this;
|
||||
return Quaternion(q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w);
|
||||
}
|
||||
|
||||
Quat Quat::operator-(const Quat &q2) const {
|
||||
const Quat &q1 = *this;
|
||||
return Quat(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
|
||||
Quaternion Quaternion::operator-(const Quaternion &q2) const {
|
||||
const Quaternion &q1 = *this;
|
||||
return Quaternion(q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w);
|
||||
}
|
||||
|
||||
Quat Quat::operator*(const Quat &q2) const {
|
||||
Quat q1 = *this;
|
||||
Quaternion Quaternion::operator*(const Quaternion &q2) const {
|
||||
Quaternion q1 = *this;
|
||||
q1 *= q2;
|
||||
return q1;
|
||||
}
|
||||
|
||||
Quat Quat::operator-() const {
|
||||
const Quat &q2 = *this;
|
||||
return Quat(-q2.x, -q2.y, -q2.z, -q2.w);
|
||||
Quaternion Quaternion::operator-() const {
|
||||
const Quaternion &q2 = *this;
|
||||
return Quaternion(-q2.x, -q2.y, -q2.z, -q2.w);
|
||||
}
|
||||
|
||||
Quat Quat::operator*(const real_t &s) const {
|
||||
return Quat(x * s, y * s, z * s, w * s);
|
||||
Quaternion Quaternion::operator*(const real_t &s) const {
|
||||
return Quaternion(x * s, y * s, z * s, w * s);
|
||||
}
|
||||
|
||||
Quat Quat::operator/(const real_t &s) const {
|
||||
Quaternion Quaternion::operator/(const real_t &s) const {
|
||||
return *this * (1.0 / s);
|
||||
}
|
||||
|
||||
bool Quat::operator==(const Quat &p_quaternion) const {
|
||||
bool Quaternion::operator==(const Quaternion &p_quaternion) const {
|
||||
return x == p_quaternion.x && y == p_quaternion.y && z == p_quaternion.z && w == p_quaternion.w;
|
||||
}
|
||||
|
||||
bool Quat::operator!=(const Quat &p_quaternion) const {
|
||||
bool Quaternion::operator!=(const Quaternion &p_quaternion) const {
|
||||
return x != p_quaternion.x || y != p_quaternion.y || z != p_quaternion.z || w != p_quaternion.w;
|
||||
}
|
||||
|
@ -111,11 +111,11 @@ String::~String() {
|
||||
godot::api->pandemonium_string_destroy(&_pandemonium_string);
|
||||
}
|
||||
|
||||
wchar_t &String::operator[](const int idx) {
|
||||
return *const_cast<wchar_t *>(godot::api->pandemonium_string_operator_index(&_pandemonium_string, idx));
|
||||
char32_t &String::operator[](const int idx) {
|
||||
return *const_cast<char32_t *>(godot::api->pandemonium_string_operator_index(&_pandemonium_string, idx));
|
||||
}
|
||||
|
||||
wchar_t String::operator[](const int idx) const {
|
||||
char32_t String::operator[](const int idx) const {
|
||||
return *godot::api->pandemonium_string_operator_index((pandemonium_string *)&_pandemonium_string, idx);
|
||||
}
|
||||
|
||||
@ -149,7 +149,7 @@ void String::operator+=(const String &s) {
|
||||
*this = String(godot::api->pandemonium_string_operator_plus(&_pandemonium_string, &s._pandemonium_string));
|
||||
}
|
||||
|
||||
void String::operator+=(const wchar_t c) {
|
||||
void String::operator+=(const char32_t c) {
|
||||
String _to_be_added = String(c);
|
||||
*this = String(godot::api->pandemonium_string_operator_plus(&_pandemonium_string, &_to_be_added._pandemonium_string));
|
||||
}
|
||||
@ -175,8 +175,8 @@ String::operator NodePath() const {
|
||||
return NodePath(*this);
|
||||
}
|
||||
|
||||
const wchar_t *String::unicode_str() const {
|
||||
return godot::api->pandemonium_string_wide_str(&_pandemonium_string);
|
||||
const char32_t *String::unicode_str() const {
|
||||
return godot::api->pandemonium_string_get_data(&_pandemonium_string);
|
||||
}
|
||||
|
||||
char *String::alloc_c_string() const {
|
||||
@ -431,8 +431,8 @@ float String::similarity(String text) const {
|
||||
|
||||
// TODO Suport allow_empty
|
||||
PoolStringArray String::split(String divisor, bool /*allow_empty*/) const {
|
||||
pandemonium_array arr = godot::api->pandemonium_string_split(&_pandemonium_string, &divisor._pandemonium_string);
|
||||
return Array(arr);
|
||||
pandemonium_pool_string_array arr = godot::api->pandemonium_string_split(&_pandemonium_string, &divisor._pandemonium_string);
|
||||
return PoolStringArray(arr);
|
||||
}
|
||||
|
||||
// TODO Suport allow_empty
|
||||
@ -500,7 +500,7 @@ String String::dedent() const {
|
||||
|
||||
PoolStringArray String::rsplit(const String &divisor, const bool allow_empty, const int maxsplit) const {
|
||||
pandemonium_pool_string_array arr =
|
||||
godot::api->pandemonium_string_rsplit(&_pandemonium_string, &divisor._pandemonium_string, allow_empty, maxsplit);
|
||||
godot::api->pandemonium_string_rsplit_maxsplit(&_pandemonium_string, &divisor._pandemonium_string, allow_empty, maxsplit);
|
||||
return PoolStringArray(arr);
|
||||
}
|
||||
|
||||
|
@ -35,7 +35,7 @@
|
||||
#include "AABB.hpp"
|
||||
#include "Plane.hpp"
|
||||
|
||||
#include "Quat.hpp"
|
||||
#include "Quaternion.hpp"
|
||||
|
||||
namespace godot {
|
||||
|
||||
@ -220,11 +220,11 @@ Transform Transform::interpolate_with(const Transform &p_transform, real_t p_c)
|
||||
/* not sure if very "efficient" but good enough? */
|
||||
|
||||
Vector3 src_scale = basis.get_scale();
|
||||
Quat src_rot = basis;
|
||||
Quaternion src_rot = basis;
|
||||
Vector3 src_loc = origin;
|
||||
|
||||
Vector3 dst_scale = p_transform.basis.get_scale();
|
||||
Quat dst_rot = p_transform.basis;
|
||||
Quaternion dst_rot = p_transform.basis;
|
||||
Vector3 dst_loc = p_transform.origin;
|
||||
|
||||
Transform dst;
|
||||
|
@ -120,7 +120,7 @@ Variant::Variant(const godot::AABB &p_aabb) {
|
||||
godot::api->pandemonium_variant_new_aabb(&_pandemonium_variant, (pandemonium_aabb *)&p_aabb);
|
||||
}
|
||||
|
||||
Variant::Variant(const Quat &p_quaternion) {
|
||||
Variant::Variant(const Quaternion &p_quaternion) {
|
||||
godot::api->pandemonium_variant_new_quaternion(&_pandemonium_variant, (pandemonium_quaternion *)&p_quaternion);
|
||||
}
|
||||
|
||||
@ -265,9 +265,9 @@ Variant::operator godot::AABB() const {
|
||||
pandemonium_aabb s = godot::api->pandemonium_variant_as_aabb(&_pandemonium_variant);
|
||||
return *(godot::AABB *)&s;
|
||||
}
|
||||
Variant::operator Quat() const {
|
||||
Variant::operator Quaternion() const {
|
||||
pandemonium_quaternion s = godot::api->pandemonium_variant_as_quaternion(&_pandemonium_variant);
|
||||
return *(Quat *)&s;
|
||||
return *(Quaternion *)&s;
|
||||
}
|
||||
Variant::operator Basis() const {
|
||||
pandemonium_basis s = godot::api->pandemonium_variant_as_basis(&_pandemonium_variant);
|
||||
|
Loading…
Reference in New Issue
Block a user