mirror of
https://github.com/Relintai/codot.git
synced 2025-04-22 05:41:17 +02:00
636 lines
19 KiB
C++
636 lines
19 KiB
C++
/*************************************************************************/
|
|
/* math_funcs.h */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#ifndef MATH_FUNCS_H
|
|
#define MATH_FUNCS_H
|
|
|
|
#include "core/math/math_defs.h"
|
|
#include "core/typedefs.h"
|
|
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
// Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD).
|
|
static const uint64_t MATH_RANDOM_32BIT_MAX = 0xFFFFFFFF;
|
|
|
|
static _ALWAYS_INLINE_ double math_sind(double p_x) {
|
|
return sin(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_sinf(float p_x) {
|
|
return sinf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_cosd(double p_x) {
|
|
return cos(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_cosf(float p_x) {
|
|
return cosf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_tand(double p_x) {
|
|
return tan(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_tanf(float p_x) {
|
|
return tanf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_sinhd(double p_x) {
|
|
return sinh(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_sinhf(float p_x) {
|
|
return sinhf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_sincf(float p_x) {
|
|
return p_x == 0 ? 1 : sinf(p_x) / p_x;
|
|
}
|
|
static _ALWAYS_INLINE_ double math_sincd(double p_x) {
|
|
return p_x == 0 ? 1 : sin(p_x) / p_x;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_sincnf(float p_x) {
|
|
return math_sincf((float)Math_PI * p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ double math_sincnd(double p_x) {
|
|
return math_sincd(Math_PI * p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_coshd(double p_x) {
|
|
return cosh(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_coshf(float p_x) {
|
|
return coshf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_tanhd(double p_x) {
|
|
return tanh(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_tanhf(float p_x) {
|
|
return tanhf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_asind(double p_x) {
|
|
return asin(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_asinf(float p_x) {
|
|
return asinf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_acosd(double p_x) {
|
|
return acos(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_acosf(float p_x) {
|
|
return acosf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_atand(double p_x) {
|
|
return atan(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_atanf(float p_x) {
|
|
return atanf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_atan2d(double p_y, double p_x) {
|
|
return atan2(p_y, p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_atan2f(float p_y, float p_x) {
|
|
return atan2f(p_y, p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_sqrtd(double p_x) {
|
|
return sqrt(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_sqrtf(float p_x) {
|
|
return sqrtf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_fmodd(double p_x, double p_y) {
|
|
return fmod(p_x, p_y);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_fmodf(float p_x, float p_y) {
|
|
return fmodf(p_x, p_y);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_floord(double p_x) {
|
|
return floor(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_floorf(float p_x) {
|
|
return floorf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_ceild(double p_x) {
|
|
return ceil(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_ceilf(float p_x) {
|
|
return ceilf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_powd(double p_x, double p_y) {
|
|
return pow(p_x, p_y);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_powf(float p_x, float p_y) {
|
|
return powf(p_x, p_y);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_logd(double p_x) {
|
|
return log(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_logf(float p_x) {
|
|
return logf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_expd(double p_x) {
|
|
return exp(p_x);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_expf(float p_x) {
|
|
return expf(p_x);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_nand(double p_val) {
|
|
#ifdef _MSC_VER
|
|
return _isnan(p_val);
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint64_t u;
|
|
double f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
|
|
return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
|
|
#else
|
|
return isnan(p_val);
|
|
#endif
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_nanf(float p_val) {
|
|
#ifdef _MSC_VER
|
|
return _isnan(p_val);
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint32_t u;
|
|
float f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
// -----------------------------------
|
|
// (single-precision floating-point)
|
|
// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
|
|
// : (> 0x7f800000)
|
|
// where,
|
|
// s : sign
|
|
// x : non-zero number
|
|
// -----------------------------------
|
|
return ((ieee754.u & 0x7fffffff) > 0x7f800000);
|
|
#else
|
|
return isnan(p_val);
|
|
#endif
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_infd(double p_val) {
|
|
#ifdef _MSC_VER
|
|
return !_finite(p_val);
|
|
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint64_t u;
|
|
double f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
|
|
((unsigned)ieee754.u == 0);
|
|
#else
|
|
return isinf(p_val);
|
|
#endif
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_inff(float p_val) {
|
|
#ifdef _MSC_VER
|
|
return !_finite(p_val);
|
|
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
|
|
#elif defined(__GNUC__) && __GNUC__ < 6
|
|
union {
|
|
uint32_t u;
|
|
float f;
|
|
} ieee754;
|
|
ieee754.f = p_val;
|
|
return (ieee754.u & 0x7fffffff) == 0x7f800000;
|
|
#else
|
|
return isinf(p_val);
|
|
#endif
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_absf(float g) {
|
|
union {
|
|
float f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
u.f = g;
|
|
u.i &= 2147483647u;
|
|
return u.f;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_absd(double g) {
|
|
union {
|
|
double d;
|
|
uint64_t i;
|
|
} u;
|
|
u.d = g;
|
|
u.i &= (uint64_t)9223372036854775807ll;
|
|
return u.d;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ int math_absi(int g) {
|
|
return g > 0 ? g : -g;
|
|
}
|
|
static _ALWAYS_INLINE_ int64_t math_absi64(int64_t g) {
|
|
return g > 0 ? g : -g;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_fposmodd(double p_x, double p_y) {
|
|
double value = math_fmodd(p_x, p_y);
|
|
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0;
|
|
return value;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_fposmodf(float p_x, float p_y) {
|
|
float value = math_fmodf(p_x, p_y);
|
|
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
|
value += p_y;
|
|
}
|
|
value += 0.0f;
|
|
return value;
|
|
}
|
|
static _ALWAYS_INLINE_ int64_t math_posmodi(int64_t p_x, int64_t p_y) {
|
|
int64_t value = p_x % p_y;
|
|
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
|
|
value += p_y;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_deg2radd(double p_y) {
|
|
return p_y * Math_PI / 180.0;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_deg2radf(float p_y) {
|
|
return p_y * (float)(Math_PI / 180.0);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_rad2degd(double p_y) {
|
|
return p_y * 180.0 / Math_PI;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_rad2degf(float p_y) {
|
|
return p_y * (float)(180.0 / Math_PI);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_lerpd(double p_from, double p_to, double p_weight) {
|
|
return p_from + (p_to - p_from) * p_weight;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_lerpf(float p_from, float p_to, float p_weight) {
|
|
return p_from + (p_to - p_from) * p_weight;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_lerp_angled(double p_from, double p_to, double p_weight) {
|
|
double difference = fmod(p_to - p_from, Math_TAU);
|
|
double distance = fmod(2.0 * difference, Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_lerp_anglef(float p_from, float p_to, float p_weight) {
|
|
float difference = fmodf(p_to - p_from, (float)Math_TAU);
|
|
float distance = fmodf(2.0f * difference, (float)Math_TAU) - difference;
|
|
return p_from + distance * p_weight;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_inverse_lerpd(double p_from, double p_to, double p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_inverse_lerpf(float p_from, float p_to, float p_value) {
|
|
return (p_value - p_from) / (p_to - p_from);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_range_lerpd(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
|
|
return math_lerpd(p_ostart, p_ostop, math_inverse_lerpd(p_istart, p_istop, p_value));
|
|
}
|
|
static _ALWAYS_INLINE_ float math_range_lerpf(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
|
|
return math_lerpf(p_ostart, p_ostop, math_inverse_lerpf(p_istart, p_istop, p_value));
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_linear2dbd(double p_linear) {
|
|
return math_logd(p_linear) * 8.6858896380650365530225783783321;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_linear2dbf(float p_linear) {
|
|
return math_logf(p_linear) * (float)8.6858896380650365530225783783321;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_db2lineard(double p_db) {
|
|
return math_expd(p_db * 0.11512925464970228420089957273422);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_db2linearf(float p_db) {
|
|
return math_expf(p_db * (float)0.11512925464970228420089957273422);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_roundd(double p_val) {
|
|
return round(p_val);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_roundf(float p_val) {
|
|
return roundf(p_val);
|
|
}
|
|
|
|
// double only, as these functions are mainly used by the editor and not performance-critical,
|
|
int math_step_decimals(double p_step);
|
|
static int math_range_step_decimals(double p_step);
|
|
double math_ease(double p_x, double p_c);
|
|
double math_stepify(double p_value, double p_step);
|
|
double math_dectime(double p_value, double p_amount, double p_step);
|
|
|
|
uint32_t math_larger_prime(uint32_t p_val);
|
|
|
|
void math_seed(uint64_t x);
|
|
void math_randomize();
|
|
uint32_t rand_from_seed(uint64_t *seed);
|
|
uint32_t math_rand();
|
|
static _ALWAYS_INLINE_ double randd() {
|
|
return (double)math_rand() / (double)MATH_RANDOM_32BIT_MAX;
|
|
}
|
|
static _ALWAYS_INLINE_ float randf() {
|
|
return (float)math_rand() / (float)MATH_RANDOM_32BIT_MAX;
|
|
}
|
|
|
|
double math_randomd(double from, double to);
|
|
float math_randomf(float from, float to);
|
|
|
|
static real_t math_randomr(int from, int to) {
|
|
return (real_t)math_randomf((real_t)from, (real_t)to);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratio(real_t a, real_t b) {
|
|
// this is an approximate way to check that numbers are close, as a ratio of their average size
|
|
// helps compare approximate numbers that may be very big or very small
|
|
real_t diff = math_absf(a - b);
|
|
if (diff == 0 || diff < CMP_EPSILON) {
|
|
return true;
|
|
}
|
|
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
|
|
diff /= avg_size;
|
|
return diff < CMP_EPSILON;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioe(real_t a, real_t b, real_t epsilon) {
|
|
// this is an approximate way to check that numbers are close, as a ratio of their average size
|
|
// helps compare approximate numbers that may be very big or very small
|
|
real_t diff = math_absf(a - b);
|
|
if (diff == 0 || diff < CMP_EPSILON) {
|
|
return true;
|
|
}
|
|
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
|
|
diff /= avg_size;
|
|
return diff < epsilon;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioem(real_t a, real_t b, real_t epsilon, real_t min_epsilon) {
|
|
// this is an approximate way to check that numbers are close, as a ratio of their average size
|
|
// helps compare approximate numbers that may be very big or very small
|
|
real_t diff = math_absf(a - b);
|
|
if (diff == 0 || diff < min_epsilon) {
|
|
return true;
|
|
}
|
|
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
|
|
diff /= avg_size;
|
|
return diff < epsilon;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approxf(float a, float b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
float tolerance = (float)CMP_EPSILON * math_absf(a);
|
|
if (tolerance < (float)CMP_EPSILON) {
|
|
tolerance = (float)CMP_EPSILON;
|
|
}
|
|
return math_absf(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approxft(float a, float b, float tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return math_absf(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_zero_approxf(float s) {
|
|
return math_absf(s) < (float)CMP_EPSILON;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approxd(double a, double b) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
double tolerance = CMP_EPSILON * math_absd(a);
|
|
if (tolerance < CMP_EPSILON) {
|
|
tolerance = CMP_EPSILON;
|
|
}
|
|
return math_absd(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_equal_approxdt(double a, double b, double tolerance) {
|
|
// Check for exact equality first, required to handle "infinity" values.
|
|
if (a == b) {
|
|
return true;
|
|
}
|
|
// Then check for approximate equality.
|
|
return math_absd(a - b) < tolerance;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ bool math_is_zero_approxd(double s) {
|
|
return math_absd(s) < CMP_EPSILON;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ double math_smoothstepd(double p_from, double p_to, double p_s) {
|
|
if (math_is_equal_approxd(p_from, p_to)) {
|
|
return p_from;
|
|
}
|
|
double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
|
|
return s * s * (3.0 - 2.0 * s);
|
|
}
|
|
static _ALWAYS_INLINE_ float math_smoothstepf(float p_from, float p_to, float p_s) {
|
|
if (math_is_equal_approxf(p_from, p_to)) {
|
|
return p_from;
|
|
}
|
|
float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
|
|
return s * s * (3.0f - 2.0f * s);
|
|
}
|
|
static _ALWAYS_INLINE_ double math_move_towardd(double p_from, double p_to, double p_delta) {
|
|
return math_absd(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
|
|
}
|
|
static _ALWAYS_INLINE_ float math_move_towardf(float p_from, float p_to, float p_delta) {
|
|
return math_absf(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ int64_t math_wrapi(int64_t value, int64_t min, int64_t max) {
|
|
int64_t range = max - min;
|
|
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
|
|
}
|
|
static _ALWAYS_INLINE_ double math_wrapd(double value, double min, double max) {
|
|
double range = max - min;
|
|
return math_is_zero_approxd(range) ? min : value - (range * math_floord((value - min) / range));
|
|
}
|
|
static _ALWAYS_INLINE_ float math_wrapf(float value, float min, float max) {
|
|
float range = max - min;
|
|
return math_is_zero_approxf(range) ? min : value - (range * math_floorf((value - min) / range));
|
|
}
|
|
|
|
// This function should be as fast as possible and rounding mode should not matter.
|
|
static _ALWAYS_INLINE_ int math_fast_ftoi(float a) {
|
|
// Assuming every supported compiler has `lrint()`.
|
|
return lrintf(a);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ uint32_t math_halfbits_to_floatbits(uint16_t h) {
|
|
uint16_t h_exp, h_sig;
|
|
uint32_t f_sgn, f_exp, f_sig;
|
|
|
|
h_exp = (h & 0x7c00u);
|
|
f_sgn = ((uint32_t)h & 0x8000u) << 16;
|
|
switch (h_exp) {
|
|
case 0x0000u: /* 0 or subnormal */
|
|
h_sig = (h & 0x03ffu);
|
|
/* Signed zero */
|
|
if (h_sig == 0) {
|
|
return f_sgn;
|
|
}
|
|
/* Subnormal */
|
|
h_sig <<= 1;
|
|
while ((h_sig & 0x0400u) == 0) {
|
|
h_sig <<= 1;
|
|
h_exp++;
|
|
}
|
|
f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
|
|
f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
|
|
return f_sgn + f_exp + f_sig;
|
|
case 0x7c00u: /* inf or NaN */
|
|
/* All-ones exponent and a copy of the significand */
|
|
return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
|
|
default: /* normalized */
|
|
/* Just need to adjust the exponent and shift */
|
|
return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
|
|
}
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_halfptr_to_float(const uint16_t *h) {
|
|
union {
|
|
uint32_t u32;
|
|
float f32;
|
|
} u;
|
|
|
|
u.u32 = math_halfbits_to_floatbits(*h);
|
|
return u.f32;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_half_to_float(const uint16_t h) {
|
|
return math_halfptr_to_float(&h);
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ uint16_t math_make_half_float(float f) {
|
|
union {
|
|
float fv;
|
|
uint32_t ui;
|
|
} ci;
|
|
ci.fv = f;
|
|
|
|
uint32_t x = ci.ui;
|
|
uint32_t sign = (unsigned short)(x >> 31);
|
|
uint32_t mantissa;
|
|
uint32_t exp;
|
|
uint16_t hf;
|
|
|
|
// get mantissa
|
|
mantissa = x & ((1 << 23) - 1);
|
|
// get exponent bits
|
|
exp = x & (0xFF << 23);
|
|
if (exp >= 0x47800000) {
|
|
// check if the original single precision float number is a NaN
|
|
if (mantissa && (exp == (0xFF << 23))) {
|
|
// we have a single precision NaN
|
|
mantissa = (1 << 23) - 1;
|
|
} else {
|
|
// 16-bit half-float representation stores number as Inf
|
|
mantissa = 0;
|
|
}
|
|
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
|
|
(uint16_t)(mantissa >> 13);
|
|
}
|
|
// check if exponent is <= -15
|
|
else if (exp <= 0x38000000) {
|
|
/*// store a denorm half-float value or zero
|
|
exp = (0x38000000 - exp) >> 23;
|
|
mantissa >>= (14 + exp);
|
|
|
|
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
|
|
*/
|
|
hf = 0; //denormals do not work for 3D, convert to zero
|
|
} else {
|
|
hf = (((uint16_t)sign) << 15) |
|
|
(uint16_t)((exp - 0x38000000) >> 13) |
|
|
(uint16_t)(mantissa >> 13);
|
|
}
|
|
|
|
return hf;
|
|
}
|
|
|
|
float math_stepifyf(float p_value, float p_step);
|
|
double math_stepifyd(double p_value, double p_step);
|
|
|
|
static _ALWAYS_INLINE_ float math_snap_scalar(float p_offset, float p_step, float p_target) {
|
|
return p_step != 0 ? math_stepifyf(p_target - p_offset, p_step) + p_offset : p_target;
|
|
}
|
|
|
|
static _ALWAYS_INLINE_ float math_snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
|
|
if (p_step != 0) {
|
|
float a = math_stepifyf(p_target - p_offset, p_step + p_separation) + p_offset;
|
|
float b = a;
|
|
if (p_target >= 0) {
|
|
b -= p_separation;
|
|
} else {
|
|
b += p_step;
|
|
}
|
|
return (math_absf(p_target - a) < math_absf(p_target - b)) ? a : b;
|
|
}
|
|
return p_target;
|
|
}
|
|
|
|
#endif // MATH_FUNCS_H
|