mirror of
https://github.com/Relintai/codot.git
synced 2025-04-22 05:41:17 +02:00
273 lines
8.9 KiB
C
273 lines
8.9 KiB
C
/*************************************************************************/
|
|
/* vector2.cpp */
|
|
/*************************************************************************/
|
|
/* This file is part of: */
|
|
/* GODOT ENGINE */
|
|
/* https://godotengine.org */
|
|
/*************************************************************************/
|
|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
|
|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
|
|
/* */
|
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
|
/* a copy of this software and associated documentation files (the */
|
|
/* "Software"), to deal in the Software without restriction, including */
|
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
|
/* the following conditions: */
|
|
/* */
|
|
/* The above copyright notice and this permission notice shall be */
|
|
/* included in all copies or substantial portions of the Software. */
|
|
/* */
|
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
|
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
|
/*************************************************************************/
|
|
|
|
#include "vector2.h"
|
|
|
|
real_t vector2_length(const Vector2 *v) {
|
|
return math_sqrtf(v->x * v->x + v->y * v->y);
|
|
}
|
|
|
|
real_t vector2_length_squared(const Vector2 *v) {
|
|
return v->x * v->x + v->y * v->y;
|
|
}
|
|
|
|
void vector2_normalize(Vector2 *v) {
|
|
real_t l = v->x * v->x + v->y * v->y;
|
|
if (l != 0) {
|
|
l = math_sqrtf(l);
|
|
v->x /= l;
|
|
v->y /= l;
|
|
}
|
|
}
|
|
|
|
Vector2 vector2_normalized(Vector2 v) {
|
|
vector2_normalize(&v);
|
|
|
|
return v;
|
|
}
|
|
|
|
bool vector2_is_normalized(const Vector2 *v) {
|
|
// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
|
|
return math_is_equal_approxft(vector2_length_squared(v), 1, (real_t)UNIT_EPSILON);
|
|
}
|
|
|
|
real_t vector2_dot(const Vector2 *self, const Vector2 *p_other) {
|
|
return self->x * p_other->x + self->y * p_other->y;
|
|
}
|
|
|
|
real_t vector2_cross(const Vector2 *self, const Vector2 *p_other) {
|
|
return self->x * p_other->y - self->y * p_other->x;
|
|
}
|
|
|
|
|
|
real_t vector2_distance_to(const Vector2 *self, const Vector2 *p_vector2) {
|
|
return math_sqrtf((self->x - p_vector2->x) * (self->x - p_vector2->x) + (self->y - p_vector2->y) * (self->y - p_vector2->y));
|
|
}
|
|
|
|
real_t vector2_distance_squared_to(const Vector2 *self, const Vector2 *p_vector2) {
|
|
return (self->x - p_vector2->x) * (self->x - p_vector2->x) + (self->y - p_vector2->y) * (self->y - p_vector2->y);
|
|
}
|
|
|
|
real_t vector2_angle_to(const Vector2 *self, const Vector2 *p_vector2) {
|
|
return math_atan2f(vector2_cross(self, p_vector2), vector2_dot(self, p_vector2));
|
|
}
|
|
|
|
real_t vector2_angle_to_point(const Vector2 *self, const Vector2 *p_vector2) {
|
|
return math_atan2f(self->y - p_vector2->y, self->x - p_vector2->x);
|
|
}
|
|
|
|
real_t vector2_angle(const Vector2 *self) {
|
|
return math_atan2f(self->y, self->x);
|
|
}
|
|
|
|
Vector2 vector2_rotated(const Vector2 *self, real_t p_by) {
|
|
Vector2 v;
|
|
|
|
vector2_set_rotation(&v, vector2_angle(self) + p_by);
|
|
vector2_mul_eqs(&v, vector2_length(&v));
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 vector2_posmod(Vector2 *self, const real_t p_mod) {
|
|
return vector2_create(math_fposmodf(self->x, p_mod), math_fposmodf(self->y, p_mod));
|
|
}
|
|
|
|
Vector2 vector2_posmodv(Vector2 *self, const Vector2 *p_modv) {
|
|
return vector2_create(math_fposmodf(self->x, p_modv->x), math_fposmodf(self->y, p_modv->y));
|
|
}
|
|
|
|
Vector2 vector2_project(Vector2 *self, const Vector2 *p_to) {
|
|
return vector2_muls(p_to, (vector2_dot(self, p_to) / vector2_length_squared(p_to)));
|
|
}
|
|
|
|
Vector2 vector2_clamped(Vector2 *self, real_t p_len) {
|
|
//WARN_DEPRECATED_MSG("'Vector2.clamped()' is deprecated because it has been renamed to 'limit_length'.");
|
|
real_t l = vector2_length(self);
|
|
Vector2 v = vector2_createv(self);
|
|
if (l > 0 && p_len < l) {
|
|
vector2_div_eqs(&v, l);
|
|
vector2_mul_eqs(&v, p_len);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 vector2_limit_length(Vector2 *self, const real_t p_len) {
|
|
const real_t l = vector2_length(self);
|
|
Vector2 v = vector2_createv(self);
|
|
if (l > 0 && p_len < l) {
|
|
vector2_div_eqs(&v, l);
|
|
vector2_mul_eqs(&v, p_len);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 vector2_limit_length1(Vector2 *self) {
|
|
const real_t l = vector2_length(self);
|
|
Vector2 v = vector2_createv(self);
|
|
vector2_div_eqs(&v, 1);
|
|
|
|
return v;
|
|
}
|
|
|
|
Vector2 vector2_sign(Vector2 *self) {
|
|
return vector2_create(SGN(self->x), SGN(self->y));
|
|
}
|
|
|
|
Vector2 vector2_floor(Vector2 *self) {
|
|
return vector2_create(math_floorf(self->x), math_floorf(self->y));
|
|
}
|
|
|
|
Vector2 vector2_ceil(Vector2 *self) {
|
|
return vector2_create(math_ceilf(self->x), math_ceilf(self->y));
|
|
}
|
|
|
|
Vector2 vector2_round(Vector2 *self) {
|
|
return vector2_create(math_roundf(self->x), math_roundf(self->y));
|
|
}
|
|
|
|
Vector2 vector2_snapped(Vector2 *self, const Vector2 *p_by) {
|
|
return vector2_create(
|
|
math_stepifyf(self->x, p_by->x),
|
|
math_stepifyf(self->y, p_by->y));
|
|
}
|
|
|
|
Vector2 vector2_cubic_interpolate(const Vector2 *self, const Vector2 *p_b, const Vector2 *p_pre_a, const Vector2 *p_post_b, real_t p_weight) {
|
|
Vector2 p0 = *p_pre_a;
|
|
Vector2 p1 = *self;
|
|
Vector2 p2 = *p_b;
|
|
Vector2 p3 = *p_post_b;
|
|
Vector2 np0 = vector2_neg(&p0);
|
|
|
|
real_t t = p_weight;
|
|
real_t t2 = t * t;
|
|
real_t t3 = t2 * t;
|
|
|
|
/*
|
|
Vector2 out;
|
|
out = 0.5f *
|
|
((p1 * 2) +
|
|
(-p0 + p2) * t +
|
|
(2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 +
|
|
(-p0 + 3 * p1 - 3 * p2 + p3) * t3);
|
|
*/
|
|
real_t x = 0.5f * ((p1.x * 2) + (np0.x + p2.x) * t + (2 * p0.x - 5 * p1.x + 4 * p2.x - p3.x) * t2 + (np0.x + 3 * p1.x - 3 * p2.x + p3.x) * t3);
|
|
real_t y = 0.5f * ((p1.y * 2) + (np0.y + p2.y) * t + (2 * p0.y - 5 * p1.y + 4 * p2.y - p3.y) * t2 + (np0.y + 3 * p1.y - 3 * p2.y + p3.y) * t3);
|
|
|
|
return vector2_create(x, y);
|
|
}
|
|
|
|
Vector2 vector2_move_toward(const Vector2 *self, const Vector2 *p_to, const real_t p_delta) {
|
|
Vector2 v = *self;
|
|
Vector2 vd = vector2_subv(p_to, &v);
|
|
real_t len = vector2_length(&vd);
|
|
return len <= p_delta || len < (real_t)CMP_EPSILON ? *p_to : vector2_divsc(vector2_addv(&v, &vd), len * p_delta);
|
|
}
|
|
|
|
// slide returns the component of the vector along the given plane, specified by its normal vector.
|
|
Vector2 vector2_slide(const Vector2 *self, const Vector2 *p_normal) {
|
|
#ifdef MATH_CHECKS
|
|
ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return vector2_mulsc(vector2_subv(self, p_normal), vector2_dot(self, p_normal));
|
|
}
|
|
|
|
Vector2 vector2_bounce(const Vector2 *self, const Vector2 *p_normal) {
|
|
return vector2_negc(vector2_reflect(self, p_normal));
|
|
}
|
|
|
|
Vector2 vector2_reflect(const Vector2 *self, const Vector2 *p_normal) {
|
|
#ifdef MATH_CHECKS
|
|
//ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector2(), "The normal Vector2 must be normalized.");
|
|
#endif
|
|
return vector2_subvc(vector2_mulsc(vector2_muls(p_normal, vector2_dot(self, p_normal)), 2), *self);
|
|
}
|
|
|
|
bool vector2_is_equal_approx(const Vector2 *self, const Vector2 *p_v) {
|
|
return math_is_equal_approxf(self->x, p_v->x) && math_is_equal_approxf(self->y, p_v->y);
|
|
}
|
|
|
|
/*
|
|
|
|
// Vector2i
|
|
|
|
Vector2i Vector2i::operator+(const Vector2i &p_v) {
|
|
return Vector2i(x + p_v.x, y + p_v.y);
|
|
}
|
|
void Vector2i::operator+=(const Vector2i &p_v) {
|
|
x += p_v.x;
|
|
y += p_v.y;
|
|
}
|
|
Vector2i Vector2i::operator-(const Vector2i &p_v) {
|
|
return Vector2i(x - p_v.x, y - p_v.y);
|
|
}
|
|
void Vector2i::operator-=(const Vector2i &p_v) {
|
|
x -= p_v.x;
|
|
y -= p_v.y;
|
|
}
|
|
|
|
Vector2i Vector2i::operator*(const Vector2i &p_v1) {
|
|
return Vector2i(x * p_v1.x, y * p_v1.y);
|
|
};
|
|
|
|
Vector2i Vector2i::operator*(const int &rvalue) {
|
|
return Vector2i(x * rvalue, y * rvalue);
|
|
};
|
|
void Vector2i::operator*=(const int &rvalue) {
|
|
x *= rvalue;
|
|
y *= rvalue;
|
|
};
|
|
|
|
Vector2i Vector2i::operator/(const Vector2i &p_v1) {
|
|
return Vector2i(x / p_v1.x, y / p_v1.y);
|
|
};
|
|
|
|
Vector2i Vector2i::operator/(const int &rvalue) {
|
|
return Vector2i(x / rvalue, y / rvalue);
|
|
};
|
|
|
|
void Vector2i::operator/=(const int &rvalue) {
|
|
x /= rvalue;
|
|
y /= rvalue;
|
|
};
|
|
|
|
Vector2i Vector2i::operator-() {
|
|
return Vector2i(-x, -y);
|
|
}
|
|
|
|
bool Vector2i::operator==(const Vector2i &p_vec2) {
|
|
return x == p_vec2.x && y == p_vec2.y;
|
|
}
|
|
bool Vector2i::operator!=(const Vector2i &p_vec2) {
|
|
return x != p_vec2.x || y != p_vec2.y;
|
|
}
|
|
*/ |