codot/core/math/math_funcs.h

636 lines
19 KiB
C++

/*************************************************************************/
/* math_funcs.h */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#ifndef MATH_FUNCS_H
#define MATH_FUNCS_H
#include "core/math/math_defs.h"
#include "core/typedefs.h"
#include <float.h>
#include <math.h>
// Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD).
static const uint64_t MATH_RANDOM_32BIT_MAX = 0xFFFFFFFF;
static _ALWAYS_INLINE_ double math_sind(double p_x) {
return sin(p_x);
}
static _ALWAYS_INLINE_ float math_sinf(float p_x) {
return sinf(p_x);
}
static _ALWAYS_INLINE_ double math_cosd(double p_x) {
return cos(p_x);
}
static _ALWAYS_INLINE_ float math_cosf(float p_x) {
return cosf(p_x);
}
static _ALWAYS_INLINE_ double math_tand(double p_x) {
return tan(p_x);
}
static _ALWAYS_INLINE_ float math_tanf(float p_x) {
return tanf(p_x);
}
static _ALWAYS_INLINE_ double math_sinhd(double p_x) {
return sinh(p_x);
}
static _ALWAYS_INLINE_ float math_sinhf(float p_x) {
return sinhf(p_x);
}
static _ALWAYS_INLINE_ float math_sincf(float p_x) {
return p_x == 0 ? 1 : sinf(p_x) / p_x;
}
static _ALWAYS_INLINE_ double math_sincd(double p_x) {
return p_x == 0 ? 1 : sin(p_x) / p_x;
}
static _ALWAYS_INLINE_ float math_sincnf(float p_x) {
return math_sincf((float)Math_PI * p_x);
}
static _ALWAYS_INLINE_ double math_sincnd(double p_x) {
return math_sincd(Math_PI * p_x);
}
static _ALWAYS_INLINE_ double math_coshd(double p_x) {
return cosh(p_x);
}
static _ALWAYS_INLINE_ float math_coshf(float p_x) {
return coshf(p_x);
}
static _ALWAYS_INLINE_ double math_tanhd(double p_x) {
return tanh(p_x);
}
static _ALWAYS_INLINE_ float math_tanhf(float p_x) {
return tanhf(p_x);
}
static _ALWAYS_INLINE_ double math_asind(double p_x) {
return asin(p_x);
}
static _ALWAYS_INLINE_ float math_asinf(float p_x) {
return asinf(p_x);
}
static _ALWAYS_INLINE_ double math_acosd(double p_x) {
return acos(p_x);
}
static _ALWAYS_INLINE_ float math_acosf(float p_x) {
return acosf(p_x);
}
static _ALWAYS_INLINE_ double math_atand(double p_x) {
return atan(p_x);
}
static _ALWAYS_INLINE_ float math_atanf(float p_x) {
return atanf(p_x);
}
static _ALWAYS_INLINE_ double math_atan2d(double p_y, double p_x) {
return atan2(p_y, p_x);
}
static _ALWAYS_INLINE_ float math_atan2f(float p_y, float p_x) {
return atan2f(p_y, p_x);
}
static _ALWAYS_INLINE_ double math_sqrtd(double p_x) {
return sqrt(p_x);
}
static _ALWAYS_INLINE_ float math_sqrtf(float p_x) {
return sqrtf(p_x);
}
static _ALWAYS_INLINE_ double math_fmodd(double p_x, double p_y) {
return fmod(p_x, p_y);
}
static _ALWAYS_INLINE_ float math_fmodf(float p_x, float p_y) {
return fmodf(p_x, p_y);
}
static _ALWAYS_INLINE_ double math_floord(double p_x) {
return floor(p_x);
}
static _ALWAYS_INLINE_ float math_floorf(float p_x) {
return floorf(p_x);
}
static _ALWAYS_INLINE_ double math_ceild(double p_x) {
return ceil(p_x);
}
static _ALWAYS_INLINE_ float math_ceilf(float p_x) {
return ceilf(p_x);
}
static _ALWAYS_INLINE_ double math_powd(double p_x, double p_y) {
return pow(p_x, p_y);
}
static _ALWAYS_INLINE_ float math_powf(float p_x, float p_y) {
return powf(p_x, p_y);
}
static _ALWAYS_INLINE_ double math_logd(double p_x) {
return log(p_x);
}
static _ALWAYS_INLINE_ float math_logf(float p_x) {
return logf(p_x);
}
static _ALWAYS_INLINE_ double math_expd(double p_x) {
return exp(p_x);
}
static _ALWAYS_INLINE_ float math_expf(float p_x) {
return expf(p_x);
}
static _ALWAYS_INLINE_ bool math_is_nand(double p_val) {
#ifdef _MSC_VER
return _isnan(p_val);
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint64_t u;
double f;
} ieee754;
ieee754.f = p_val;
// (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
#else
return isnan(p_val);
#endif
}
static _ALWAYS_INLINE_ bool math_is_nanf(float p_val) {
#ifdef _MSC_VER
return _isnan(p_val);
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint32_t u;
float f;
} ieee754;
ieee754.f = p_val;
// -----------------------------------
// (single-precision floating-point)
// NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
// : (> 0x7f800000)
// where,
// s : sign
// x : non-zero number
// -----------------------------------
return ((ieee754.u & 0x7fffffff) > 0x7f800000);
#else
return isnan(p_val);
#endif
}
static _ALWAYS_INLINE_ bool math_is_infd(double p_val) {
#ifdef _MSC_VER
return !_finite(p_val);
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint64_t u;
double f;
} ieee754;
ieee754.f = p_val;
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
((unsigned)ieee754.u == 0);
#else
return isinf(p_val);
#endif
}
static _ALWAYS_INLINE_ bool math_is_inff(float p_val) {
#ifdef _MSC_VER
return !_finite(p_val);
// use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
#elif defined(__GNUC__) && __GNUC__ < 6
union {
uint32_t u;
float f;
} ieee754;
ieee754.f = p_val;
return (ieee754.u & 0x7fffffff) == 0x7f800000;
#else
return isinf(p_val);
#endif
}
static _ALWAYS_INLINE_ float math_absf(float g) {
union {
float f;
uint32_t i;
} u;
u.f = g;
u.i &= 2147483647u;
return u.f;
}
static _ALWAYS_INLINE_ double math_absd(double g) {
union {
double d;
uint64_t i;
} u;
u.d = g;
u.i &= (uint64_t)9223372036854775807ll;
return u.d;
}
static _ALWAYS_INLINE_ int math_absi(int g) {
return g > 0 ? g : -g;
}
static _ALWAYS_INLINE_ int64_t math_absi64(int64_t g) {
return g > 0 ? g : -g;
}
static _ALWAYS_INLINE_ double math_fposmodd(double p_x, double p_y) {
double value = math_fmodd(p_x, p_y);
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
value += 0.0;
return value;
}
static _ALWAYS_INLINE_ float math_fposmodf(float p_x, float p_y) {
float value = math_fmodf(p_x, p_y);
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
value += 0.0f;
return value;
}
static _ALWAYS_INLINE_ int64_t math_posmodi(int64_t p_x, int64_t p_y) {
int64_t value = p_x % p_y;
if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
value += p_y;
}
return value;
}
static _ALWAYS_INLINE_ double math_deg2radd(double p_y) {
return p_y * Math_PI / 180.0;
}
static _ALWAYS_INLINE_ float math_deg2radf(float p_y) {
return p_y * (float)(Math_PI / 180.0);
}
static _ALWAYS_INLINE_ double math_rad2degd(double p_y) {
return p_y * 180.0 / Math_PI;
}
static _ALWAYS_INLINE_ float math_rad2degf(float p_y) {
return p_y * (float)(180.0 / Math_PI);
}
static _ALWAYS_INLINE_ double math_lerpd(double p_from, double p_to, double p_weight) {
return p_from + (p_to - p_from) * p_weight;
}
static _ALWAYS_INLINE_ float math_lerpf(float p_from, float p_to, float p_weight) {
return p_from + (p_to - p_from) * p_weight;
}
static _ALWAYS_INLINE_ double math_lerp_angled(double p_from, double p_to, double p_weight) {
double difference = fmod(p_to - p_from, Math_TAU);
double distance = fmod(2.0 * difference, Math_TAU) - difference;
return p_from + distance * p_weight;
}
static _ALWAYS_INLINE_ float math_lerp_anglef(float p_from, float p_to, float p_weight) {
float difference = fmodf(p_to - p_from, (float)Math_TAU);
float distance = fmodf(2.0f * difference, (float)Math_TAU) - difference;
return p_from + distance * p_weight;
}
static _ALWAYS_INLINE_ double math_inverse_lerpd(double p_from, double p_to, double p_value) {
return (p_value - p_from) / (p_to - p_from);
}
static _ALWAYS_INLINE_ float math_inverse_lerpf(float p_from, float p_to, float p_value) {
return (p_value - p_from) / (p_to - p_from);
}
static _ALWAYS_INLINE_ double math_range_lerpd(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
return math_lerpd(p_ostart, p_ostop, math_inverse_lerpd(p_istart, p_istop, p_value));
}
static _ALWAYS_INLINE_ float math_range_lerpf(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
return math_lerpf(p_ostart, p_ostop, math_inverse_lerpf(p_istart, p_istop, p_value));
}
static _ALWAYS_INLINE_ double math_linear2dbd(double p_linear) {
return math_logd(p_linear) * 8.6858896380650365530225783783321;
}
static _ALWAYS_INLINE_ float math_linear2dbf(float p_linear) {
return math_logf(p_linear) * (float)8.6858896380650365530225783783321;
}
static _ALWAYS_INLINE_ double math_db2lineard(double p_db) {
return math_expd(p_db * 0.11512925464970228420089957273422);
}
static _ALWAYS_INLINE_ float math_db2linearf(float p_db) {
return math_expf(p_db * (float)0.11512925464970228420089957273422);
}
static _ALWAYS_INLINE_ double math_roundd(double p_val) {
return round(p_val);
}
static _ALWAYS_INLINE_ float math_roundf(float p_val) {
return roundf(p_val);
}
// double only, as these functions are mainly used by the editor and not performance-critical,
int math_step_decimals(double p_step);
static int math_range_step_decimals(double p_step);
double math_ease(double p_x, double p_c);
double math_stepify(double p_value, double p_step);
double math_dectime(double p_value, double p_amount, double p_step);
uint32_t math_larger_prime(uint32_t p_val);
void math_seed(uint64_t x);
void math_randomize();
uint32_t rand_from_seed(uint64_t *seed);
uint32_t math_rand();
static _ALWAYS_INLINE_ double randd() {
return (double)math_rand() / (double)MATH_RANDOM_32BIT_MAX;
}
static _ALWAYS_INLINE_ float randf() {
return (float)math_rand() / (float)MATH_RANDOM_32BIT_MAX;
}
double math_randomd(double from, double to);
float math_randomf(float from, float to);
static real_t math_randomr(int from, int to) {
return (real_t)math_randomf((real_t)from, (real_t)to);
}
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratio(real_t a, real_t b) {
// this is an approximate way to check that numbers are close, as a ratio of their average size
// helps compare approximate numbers that may be very big or very small
real_t diff = math_absf(a - b);
if (diff == 0 || diff < CMP_EPSILON) {
return true;
}
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
diff /= avg_size;
return diff < CMP_EPSILON;
}
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioe(real_t a, real_t b, real_t epsilon) {
// this is an approximate way to check that numbers are close, as a ratio of their average size
// helps compare approximate numbers that may be very big or very small
real_t diff = math_absf(a - b);
if (diff == 0 || diff < CMP_EPSILON) {
return true;
}
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
diff /= avg_size;
return diff < epsilon;
}
static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioem(real_t a, real_t b, real_t epsilon, real_t min_epsilon) {
// this is an approximate way to check that numbers are close, as a ratio of their average size
// helps compare approximate numbers that may be very big or very small
real_t diff = math_absf(a - b);
if (diff == 0 || diff < min_epsilon) {
return true;
}
real_t avg_size = (math_absf(a) + math_absf(b)) / 2;
diff /= avg_size;
return diff < epsilon;
}
static _ALWAYS_INLINE_ bool math_is_equal_approxf(float a, float b) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
float tolerance = (float)CMP_EPSILON * math_absf(a);
if (tolerance < (float)CMP_EPSILON) {
tolerance = (float)CMP_EPSILON;
}
return math_absf(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool math_is_equal_approxft(float a, float b, float tolerance) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
return math_absf(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool math_is_zero_approxf(float s) {
return math_absf(s) < (float)CMP_EPSILON;
}
static _ALWAYS_INLINE_ bool math_is_equal_approxd(double a, double b) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
double tolerance = CMP_EPSILON * math_absd(a);
if (tolerance < CMP_EPSILON) {
tolerance = CMP_EPSILON;
}
return math_absd(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool math_is_equal_approxdt(double a, double b, double tolerance) {
// Check for exact equality first, required to handle "infinity" values.
if (a == b) {
return true;
}
// Then check for approximate equality.
return math_absd(a - b) < tolerance;
}
static _ALWAYS_INLINE_ bool math_is_zero_approxd(double s) {
return math_absd(s) < CMP_EPSILON;
}
static _ALWAYS_INLINE_ double math_smoothstepd(double p_from, double p_to, double p_s) {
if (math_is_equal_approxd(p_from, p_to)) {
return p_from;
}
double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
return s * s * (3.0 - 2.0 * s);
}
static _ALWAYS_INLINE_ float math_smoothstepf(float p_from, float p_to, float p_s) {
if (math_is_equal_approxf(p_from, p_to)) {
return p_from;
}
float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
return s * s * (3.0f - 2.0f * s);
}
static _ALWAYS_INLINE_ double math_move_towardd(double p_from, double p_to, double p_delta) {
return math_absd(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
}
static _ALWAYS_INLINE_ float math_move_towardf(float p_from, float p_to, float p_delta) {
return math_absf(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta;
}
static _ALWAYS_INLINE_ int64_t math_wrapi(int64_t value, int64_t min, int64_t max) {
int64_t range = max - min;
return range == 0 ? min : min + ((((value - min) % range) + range) % range);
}
static _ALWAYS_INLINE_ double math_wrapd(double value, double min, double max) {
double range = max - min;
return math_is_zero_approxd(range) ? min : value - (range * math_floord((value - min) / range));
}
static _ALWAYS_INLINE_ float math_wrapf(float value, float min, float max) {
float range = max - min;
return math_is_zero_approxf(range) ? min : value - (range * math_floorf((value - min) / range));
}
// This function should be as fast as possible and rounding mode should not matter.
static _ALWAYS_INLINE_ int math_fast_ftoi(float a) {
// Assuming every supported compiler has `lrint()`.
return lrintf(a);
}
static _ALWAYS_INLINE_ uint32_t math_halfbits_to_floatbits(uint16_t h) {
uint16_t h_exp, h_sig;
uint32_t f_sgn, f_exp, f_sig;
h_exp = (h & 0x7c00u);
f_sgn = ((uint32_t)h & 0x8000u) << 16;
switch (h_exp) {
case 0x0000u: /* 0 or subnormal */
h_sig = (h & 0x03ffu);
/* Signed zero */
if (h_sig == 0) {
return f_sgn;
}
/* Subnormal */
h_sig <<= 1;
while ((h_sig & 0x0400u) == 0) {
h_sig <<= 1;
h_exp++;
}
f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
return f_sgn + f_exp + f_sig;
case 0x7c00u: /* inf or NaN */
/* All-ones exponent and a copy of the significand */
return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
default: /* normalized */
/* Just need to adjust the exponent and shift */
return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
}
}
static _ALWAYS_INLINE_ float math_halfptr_to_float(const uint16_t *h) {
union {
uint32_t u32;
float f32;
} u;
u.u32 = math_halfbits_to_floatbits(*h);
return u.f32;
}
static _ALWAYS_INLINE_ float math_half_to_float(const uint16_t h) {
return math_halfptr_to_float(&h);
}
static _ALWAYS_INLINE_ uint16_t math_make_half_float(float f) {
union {
float fv;
uint32_t ui;
} ci;
ci.fv = f;
uint32_t x = ci.ui;
uint32_t sign = (unsigned short)(x >> 31);
uint32_t mantissa;
uint32_t exp;
uint16_t hf;
// get mantissa
mantissa = x & ((1 << 23) - 1);
// get exponent bits
exp = x & (0xFF << 23);
if (exp >= 0x47800000) {
// check if the original single precision float number is a NaN
if (mantissa && (exp == (0xFF << 23))) {
// we have a single precision NaN
mantissa = (1 << 23) - 1;
} else {
// 16-bit half-float representation stores number as Inf
mantissa = 0;
}
hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
(uint16_t)(mantissa >> 13);
}
// check if exponent is <= -15
else if (exp <= 0x38000000) {
/*// store a denorm half-float value or zero
exp = (0x38000000 - exp) >> 23;
mantissa >>= (14 + exp);
hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
*/
hf = 0; //denormals do not work for 3D, convert to zero
} else {
hf = (((uint16_t)sign) << 15) |
(uint16_t)((exp - 0x38000000) >> 13) |
(uint16_t)(mantissa >> 13);
}
return hf;
}
float math_stepifyf(float p_value, float p_step);
double math_stepifyd(double p_value, double p_step);
static _ALWAYS_INLINE_ float math_snap_scalar(float p_offset, float p_step, float p_target) {
return p_step != 0 ? math_stepifyf(p_target - p_offset, p_step) + p_offset : p_target;
}
static _ALWAYS_INLINE_ float math_snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
if (p_step != 0) {
float a = math_stepifyf(p_target - p_offset, p_step + p_separation) + p_offset;
float b = a;
if (p_target >= 0) {
b -= p_separation;
} else {
b += p_step;
}
return (math_absf(p_target - a) < math_absf(p_target - b)) ? a : b;
}
return p_target;
}
#endif // MATH_FUNCS_H