/*************************************************************************/ /* math_funcs.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef MATH_FUNCS_H #define MATH_FUNCS_H #include "core/math/math_defs.h" #include "core/typedefs.h" #include #include // Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD). static const uint64_t MATH_RANDOM_32BIT_MAX = 0xFFFFFFFF; static _ALWAYS_INLINE_ double math_sind(double p_x) { return sin(p_x); } static _ALWAYS_INLINE_ float math_sinf(float p_x) { return sinf(p_x); } static _ALWAYS_INLINE_ double math_cosd(double p_x) { return cos(p_x); } static _ALWAYS_INLINE_ float math_cosf(float p_x) { return cosf(p_x); } static _ALWAYS_INLINE_ double math_tand(double p_x) { return tan(p_x); } static _ALWAYS_INLINE_ float math_tanf(float p_x) { return tanf(p_x); } static _ALWAYS_INLINE_ double math_sinhd(double p_x) { return sinh(p_x); } static _ALWAYS_INLINE_ float math_sinhf(float p_x) { return sinhf(p_x); } static _ALWAYS_INLINE_ float math_sincf(float p_x) { return p_x == 0 ? 1 : sinf(p_x) / p_x; } static _ALWAYS_INLINE_ double math_sincd(double p_x) { return p_x == 0 ? 1 : sin(p_x) / p_x; } static _ALWAYS_INLINE_ float math_sincnf(float p_x) { return math_sincf((float)Math_PI * p_x); } static _ALWAYS_INLINE_ double math_sincnd(double p_x) { return math_sincd(Math_PI * p_x); } static _ALWAYS_INLINE_ double math_coshd(double p_x) { return cosh(p_x); } static _ALWAYS_INLINE_ float math_coshf(float p_x) { return coshf(p_x); } static _ALWAYS_INLINE_ double math_tanhd(double p_x) { return tanh(p_x); } static _ALWAYS_INLINE_ float math_tanhf(float p_x) { return tanhf(p_x); } static _ALWAYS_INLINE_ double math_asind(double p_x) { return asin(p_x); } static _ALWAYS_INLINE_ float math_asinf(float p_x) { return asinf(p_x); } static _ALWAYS_INLINE_ double math_acosd(double p_x) { return acos(p_x); } static _ALWAYS_INLINE_ float math_acosf(float p_x) { return acosf(p_x); } static _ALWAYS_INLINE_ double math_atand(double p_x) { return atan(p_x); } static _ALWAYS_INLINE_ float math_atanf(float p_x) { return atanf(p_x); } static _ALWAYS_INLINE_ double math_atan2d(double p_y, double p_x) { return atan2(p_y, p_x); } static _ALWAYS_INLINE_ float math_atan2f(float p_y, float p_x) { return atan2f(p_y, p_x); } static _ALWAYS_INLINE_ double math_sqrtd(double p_x) { return sqrt(p_x); } static _ALWAYS_INLINE_ float math_sqrtf(float p_x) { return sqrtf(p_x); } static _ALWAYS_INLINE_ double math_fmodd(double p_x, double p_y) { return fmod(p_x, p_y); } static _ALWAYS_INLINE_ float math_fmodf(float p_x, float p_y) { return fmodf(p_x, p_y); } static _ALWAYS_INLINE_ double math_floord(double p_x) { return floor(p_x); } static _ALWAYS_INLINE_ float math_floorf(float p_x) { return floorf(p_x); } static _ALWAYS_INLINE_ double math_ceild(double p_x) { return ceil(p_x); } static _ALWAYS_INLINE_ float math_ceilf(float p_x) { return ceilf(p_x); } static _ALWAYS_INLINE_ double math_powd(double p_x, double p_y) { return pow(p_x, p_y); } static _ALWAYS_INLINE_ float math_powf(float p_x, float p_y) { return powf(p_x, p_y); } static _ALWAYS_INLINE_ double math_logd(double p_x) { return log(p_x); } static _ALWAYS_INLINE_ float math_logf(float p_x) { return logf(p_x); } static _ALWAYS_INLINE_ double math_expd(double p_x) { return exp(p_x); } static _ALWAYS_INLINE_ float math_expf(float p_x) { return expf(p_x); } static _ALWAYS_INLINE_ bool math_is_nand(double p_val) { #ifdef _MSC_VER return _isnan(p_val); #elif defined(__GNUC__) && __GNUC__ < 6 union { uint64_t u; double f; } ieee754; ieee754.f = p_val; // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000 return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000); #else return isnan(p_val); #endif } static _ALWAYS_INLINE_ bool math_is_nanf(float p_val) { #ifdef _MSC_VER return _isnan(p_val); #elif defined(__GNUC__) && __GNUC__ < 6 union { uint32_t u; float f; } ieee754; ieee754.f = p_val; // ----------------------------------- // (single-precision floating-point) // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx // : (> 0x7f800000) // where, // s : sign // x : non-zero number // ----------------------------------- return ((ieee754.u & 0x7fffffff) > 0x7f800000); #else return isnan(p_val); #endif } static _ALWAYS_INLINE_ bool math_is_infd(double p_val) { #ifdef _MSC_VER return !_finite(p_val); // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era #elif defined(__GNUC__) && __GNUC__ < 6 union { uint64_t u; double f; } ieee754; ieee754.f = p_val; return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && ((unsigned)ieee754.u == 0); #else return isinf(p_val); #endif } static _ALWAYS_INLINE_ bool math_is_inff(float p_val) { #ifdef _MSC_VER return !_finite(p_val); // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era #elif defined(__GNUC__) && __GNUC__ < 6 union { uint32_t u; float f; } ieee754; ieee754.f = p_val; return (ieee754.u & 0x7fffffff) == 0x7f800000; #else return isinf(p_val); #endif } static _ALWAYS_INLINE_ float math_absf(float g) { union { float f; uint32_t i; } u; u.f = g; u.i &= 2147483647u; return u.f; } static _ALWAYS_INLINE_ double math_absd(double g) { union { double d; uint64_t i; } u; u.d = g; u.i &= (uint64_t)9223372036854775807ll; return u.d; } static _ALWAYS_INLINE_ int math_absi(int g) { return g > 0 ? g : -g; } static _ALWAYS_INLINE_ int64_t math_absi64(int64_t g) { return g > 0 ? g : -g; } static _ALWAYS_INLINE_ double math_fposmodd(double p_x, double p_y) { double value = math_fmodd(p_x, p_y); if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { value += p_y; } value += 0.0; return value; } static _ALWAYS_INLINE_ float math_fposmodf(float p_x, float p_y) { float value = math_fmodf(p_x, p_y); if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { value += p_y; } value += 0.0f; return value; } static _ALWAYS_INLINE_ int64_t math_posmodi(int64_t p_x, int64_t p_y) { int64_t value = p_x % p_y; if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) { value += p_y; } return value; } static _ALWAYS_INLINE_ double math_deg2radd(double p_y) { return p_y * Math_PI / 180.0; } static _ALWAYS_INLINE_ float math_deg2radf(float p_y) { return p_y * (float)(Math_PI / 180.0); } static _ALWAYS_INLINE_ double math_rad2degd(double p_y) { return p_y * 180.0 / Math_PI; } static _ALWAYS_INLINE_ float math_rad2degf(float p_y) { return p_y * (float)(180.0 / Math_PI); } static _ALWAYS_INLINE_ double math_lerpd(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; } static _ALWAYS_INLINE_ float math_lerpf(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; } static _ALWAYS_INLINE_ double math_lerp_angled(double p_from, double p_to, double p_weight) { double difference = fmod(p_to - p_from, Math_TAU); double distance = fmod(2.0 * difference, Math_TAU) - difference; return p_from + distance * p_weight; } static _ALWAYS_INLINE_ float math_lerp_anglef(float p_from, float p_to, float p_weight) { float difference = fmodf(p_to - p_from, (float)Math_TAU); float distance = fmodf(2.0f * difference, (float)Math_TAU) - difference; return p_from + distance * p_weight; } static _ALWAYS_INLINE_ double math_inverse_lerpd(double p_from, double p_to, double p_value) { return (p_value - p_from) / (p_to - p_from); } static _ALWAYS_INLINE_ float math_inverse_lerpf(float p_from, float p_to, float p_value) { return (p_value - p_from) / (p_to - p_from); } static _ALWAYS_INLINE_ double math_range_lerpd(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) { return math_lerpd(p_ostart, p_ostop, math_inverse_lerpd(p_istart, p_istop, p_value)); } static _ALWAYS_INLINE_ float math_range_lerpf(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) { return math_lerpf(p_ostart, p_ostop, math_inverse_lerpf(p_istart, p_istop, p_value)); } static _ALWAYS_INLINE_ double math_linear2dbd(double p_linear) { return math_logd(p_linear) * 8.6858896380650365530225783783321; } static _ALWAYS_INLINE_ float math_linear2dbf(float p_linear) { return math_logf(p_linear) * (float)8.6858896380650365530225783783321; } static _ALWAYS_INLINE_ double math_db2lineard(double p_db) { return math_expd(p_db * 0.11512925464970228420089957273422); } static _ALWAYS_INLINE_ float math_db2linearf(float p_db) { return math_expf(p_db * (float)0.11512925464970228420089957273422); } static _ALWAYS_INLINE_ double math_roundd(double p_val) { return round(p_val); } static _ALWAYS_INLINE_ float math_roundf(float p_val) { return roundf(p_val); } // double only, as these functions are mainly used by the editor and not performance-critical, static double ease(double p_x, double p_c); int step_decimals(double p_step); static int range_step_decimals(double p_step); static double stepify(double p_value, double p_step); static double dectime(double p_value, double p_amount, double p_step); static uint32_t larger_prime(uint32_t p_val); static void seed(uint64_t x); static void randomize(); static uint32_t rand_from_seed(uint64_t *seed); uint32_t rand(); static _ALWAYS_INLINE_ double randd() { return (double)rand() / (double)MATH_RANDOM_32BIT_MAX; } static _ALWAYS_INLINE_ float randf() { return (float)rand() / (float)MATH_RANDOM_32BIT_MAX; } static double math_randomd(double from, double to); static float math_randomf(float from, float to); static real_t math_randomr(int from, int to) { return (real_t)math_randomf((real_t)from, (real_t)to); } static _ALWAYS_INLINE_ bool math_is_equal_approx_ratio(real_t a, real_t b) { // this is an approximate way to check that numbers are close, as a ratio of their average size // helps compare approximate numbers that may be very big or very small real_t diff = math_absf(a - b); if (diff == 0 || diff < CMP_EPSILON) { return true; } real_t avg_size = (math_absf(a) + math_absf(b)) / 2; diff /= avg_size; return diff < CMP_EPSILON; } static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioe(real_t a, real_t b, real_t epsilon) { // this is an approximate way to check that numbers are close, as a ratio of their average size // helps compare approximate numbers that may be very big or very small real_t diff = math_absf(a - b); if (diff == 0 || diff < CMP_EPSILON) { return true; } real_t avg_size = (math_absf(a) + math_absf(b)) / 2; diff /= avg_size; return diff < epsilon; } static _ALWAYS_INLINE_ bool math_is_equal_approx_ratioem(real_t a, real_t b, real_t epsilon, real_t min_epsilon) { // this is an approximate way to check that numbers are close, as a ratio of their average size // helps compare approximate numbers that may be very big or very small real_t diff = math_absf(a - b); if (diff == 0 || diff < min_epsilon) { return true; } real_t avg_size = (math_absf(a) + math_absf(b)) / 2; diff /= avg_size; return diff < epsilon; } static _ALWAYS_INLINE_ bool math_is_equal_approxf(float a, float b) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. float tolerance = (float)CMP_EPSILON * math_absf(a); if (tolerance < (float)CMP_EPSILON) { tolerance = (float)CMP_EPSILON; } return math_absf(a - b) < tolerance; } static _ALWAYS_INLINE_ bool math_is_equal_approxft(float a, float b, float tolerance) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. return math_absf(a - b) < tolerance; } static _ALWAYS_INLINE_ bool math_is_zero_approxf(float s) { return math_absf(s) < (float)CMP_EPSILON; } static _ALWAYS_INLINE_ bool math_is_equal_approxd(double a, double b) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. double tolerance = CMP_EPSILON * math_absd(a); if (tolerance < CMP_EPSILON) { tolerance = CMP_EPSILON; } return math_absd(a - b) < tolerance; } static _ALWAYS_INLINE_ bool math_is_equal_approxdt(double a, double b, double tolerance) { // Check for exact equality first, required to handle "infinity" values. if (a == b) { return true; } // Then check for approximate equality. return math_absd(a - b) < tolerance; } static _ALWAYS_INLINE_ bool math_is_zero_approxd(double s) { return math_absd(s) < CMP_EPSILON; } static _ALWAYS_INLINE_ double math_smoothstepd(double p_from, double p_to, double p_s) { if (math_is_equal_approxd(p_from, p_to)) { return p_from; } double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0); return s * s * (3.0 - 2.0 * s); } static _ALWAYS_INLINE_ float math_smoothstepf(float p_from, float p_to, float p_s) { if (math_is_equal_approxf(p_from, p_to)) { return p_from; } float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f); return s * s * (3.0f - 2.0f * s); } static _ALWAYS_INLINE_ double math_move_towardd(double p_from, double p_to, double p_delta) { return math_absd(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; } static _ALWAYS_INLINE_ float math_move_towardf(float p_from, float p_to, float p_delta) { return math_absf(p_to - p_from) <= p_delta ? p_to : p_from + SGN(p_to - p_from) * p_delta; } static _ALWAYS_INLINE_ int64_t math_wrapi(int64_t value, int64_t min, int64_t max) { int64_t range = max - min; return range == 0 ? min : min + ((((value - min) % range) + range) % range); } static _ALWAYS_INLINE_ double math_wrapd(double value, double min, double max) { double range = max - min; return math_is_zero_approxd(range) ? min : value - (range * math_floord((value - min) / range)); } static _ALWAYS_INLINE_ float math_wrapf(float value, float min, float max) { float range = max - min; return math_is_zero_approxf(range) ? min : value - (range * math_floorf((value - min) / range)); } // This function should be as fast as possible and rounding mode should not matter. static _ALWAYS_INLINE_ int math_fast_ftoi(float a) { // Assuming every supported compiler has `lrint()`. return lrintf(a); } static _ALWAYS_INLINE_ uint32_t math_halfbits_to_floatbits(uint16_t h) { uint16_t h_exp, h_sig; uint32_t f_sgn, f_exp, f_sig; h_exp = (h & 0x7c00u); f_sgn = ((uint32_t)h & 0x8000u) << 16; switch (h_exp) { case 0x0000u: /* 0 or subnormal */ h_sig = (h & 0x03ffu); /* Signed zero */ if (h_sig == 0) { return f_sgn; } /* Subnormal */ h_sig <<= 1; while ((h_sig & 0x0400u) == 0) { h_sig <<= 1; h_exp++; } f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23; f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13; return f_sgn + f_exp + f_sig; case 0x7c00u: /* inf or NaN */ /* All-ones exponent and a copy of the significand */ return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13); default: /* normalized */ /* Just need to adjust the exponent and shift */ return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13); } } static _ALWAYS_INLINE_ float math_halfptr_to_float(const uint16_t *h) { union { uint32_t u32; float f32; } u; u.u32 = math_halfbits_to_floatbits(*h); return u.f32; } static _ALWAYS_INLINE_ float math_half_to_float(const uint16_t h) { return math_halfptr_to_float(&h); } static _ALWAYS_INLINE_ uint16_t math_make_half_float(float f) { union { float fv; uint32_t ui; } ci; ci.fv = f; uint32_t x = ci.ui; uint32_t sign = (unsigned short)(x >> 31); uint32_t mantissa; uint32_t exp; uint16_t hf; // get mantissa mantissa = x & ((1 << 23) - 1); // get exponent bits exp = x & (0xFF << 23); if (exp >= 0x47800000) { // check if the original single precision float number is a NaN if (mantissa && (exp == (0xFF << 23))) { // we have a single precision NaN mantissa = (1 << 23) - 1; } else { // 16-bit half-float representation stores number as Inf mantissa = 0; } hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) | (uint16_t)(mantissa >> 13); } // check if exponent is <= -15 else if (exp <= 0x38000000) { /*// store a denorm half-float value or zero exp = (0x38000000 - exp) >> 23; mantissa >>= (14 + exp); hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa); */ hf = 0; //denormals do not work for 3D, convert to zero } else { hf = (((uint16_t)sign) << 15) | (uint16_t)((exp - 0x38000000) >> 13) | (uint16_t)(mantissa >> 13); } return hf; } float math_stepifyf(float p_value, float p_step); double math_stepifyd(double p_value, double p_step); static _ALWAYS_INLINE_ float math_snap_scalar(float p_offset, float p_step, float p_target) { return p_step != 0 ? math_stepifyf(p_target - p_offset, p_step) + p_offset : p_target; } static _ALWAYS_INLINE_ float math_snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) { if (p_step != 0) { float a = math_stepifyf(p_target - p_offset, p_step + p_separation) + p_offset; float b = a; if (p_target >= 0) { b -= p_separation; } else { b += p_step; } return (math_absf(p_target - a) < math_absf(p_target - b)) ? a : b; } return p_target; } #endif // MATH_FUNCS_H