broken_seals/game/addons/mat_maker_gd/nodes/common/sdf2d.gd
2021-10-22 23:24:29 +02:00

2452 lines
55 KiB
GDScript

tool
extends Reference
const Commons = preload("res://addons/mat_maker_gd/nodes/common/commons.gd")
#----------------------
#sdarc.mmg
#An arc as a signed distance function
#"outputs": [
#{
# "longdesc": "The arc as a signed distance function",
# "sdf2d": "sdArc($uv-vec2(0.5), mod($a1, 360.0)*0.01745329251, mod($a2, 360.0)*0.01745329251, $r1, $r2)",
# "shortdesc": "Output",
# "type": "sdf2d"
#}
#],
#"parameters": [
#{
# "control": "Angle1.a",
# "default": 0,
# "label": "Angle 1",
# "longdesc": "The first angle of the arc",
# "max": 180,
# "min": -180,
# "name": "a1",
# "shortdesc": "Angle1",
# "step": 1,
# "type": "float"
#},
#{
# "control": "Angle2.a",
# "default": 0,
# "label": "Angle 2",
# "longdesc": "The second angle of the arc",
# "max": 180,
# "min": -180,
# "name": "a2",
# "shortdesc": "Angle2",
# "step": 1,
# "type": "float"
#},
#{
# "control": "Radius1.r",
# "default": 0.5,
# "label": "Radius",
# "longdesc": "The radius of the arc",
# "max": 1,
# "min": 0,
# "name": "r1",
# "shortdesc": "Radius",
# "step": 0.01,
# "type": "float"
#},
#{
# "control": "Radius11.r",
# "default": 0.1,
# "label": "Width",
# "longdesc": "The width of the shape around the arc",
# "max": 1,
# "min": 0,
# "name": "r2",
# "shortdesc": "Width",
# "step": 0.01,
# "type": "float"
#}
#]
#----------------------
#sdboolean.mmg
#Performs a boolean operation (union, intersection or difference) between two shapes
#"inputs": [
#{
# "default": "0.0",
# "label": "",
# "longdesc": "The first shape, defined as a signed distance function",
# "name": "in1",
# "shortdesc": "Input1",
# "type": "sdf2d"
#},
#{
# "default": "0.0",
# "label": "",
# "longdesc": "The second shape, defined as a signed distance function",
# "name": "in2",
# "shortdesc": "Input2",
# "type": "sdf2d"
#}
#],
#"outputs": [
#{
# "longdesc": "The shape generated by the boolean operation",
# "sdf2d": "$op $in1($uv), $in2($uv))",
# "shortdesc": "Output",
# "type": "sdf2d"
#}
#],
#"parameters": [
#{
# "default": 2,
# "label": "",
# "longdesc": "The operation performed by this node",
# "name": "op",
# "shortdesc": "Operation",
# "type": "enum",
# "values": [
# {
# "name": "Union",
# "value": "min("
# },
# {
# "name": "Subtraction",
# "value": "max(-"
# },
# {
# "name": "Intersection",
# "value": "max("
# }
# ]
#}
#],
#----------------------
#sdbox.mmg
#A rectangle described as a signed distance function
# "code": "vec2 $(name_uv)_d = abs($uv-vec2($cx+0.5, $cy+0.5))-vec2($w, $h);",
# "outputs": [
# {
# "longdesc": "The generated signed distance function",
# "sdf2d": "length(max($(name_uv)_d,vec2(0)))+min(max($(name_uv)_d.x,$(name_uv)_d.y),0.0)",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Rect1.x",
# "default": 0.5,
# "label": "Width",
# "longdesc": "The width of the box",
# "max": 1,
# "min": 0,
# "name": "w",
# "shortdesc": "Width",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "Rect1.y",
# "default": 1,
# "label": "Height",
# "longdesc": "The height of the box",
# "max": 1,
# "min": 0,
# "name": "h",
# "shortdesc": "Height",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.x",
# "default": 0,
# "label": "Center X",
# "longdesc": "The position of the center of the box on the X axis",
# "max": 1,
# "min": -1,
# "name": "cx",
# "shortdesc": "Center.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": 0,
# "label": "Center Y",
# "longdesc": "The position of the center of the box on the Y axis",
# "max": 1,
# "min": -1,
# "name": "cy",
# "shortdesc": "Center.y",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdcircle.mmg
#A circle described as a signed distance function
# "outputs": [
# {
# "longdesc": "The generated signed distance function",
# "sdf2d": "length($uv-vec2($cx+0.5, $cy+0.5))-$r",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Radius1.r",
# "default": 0.5,
# "label": "Radius",
# "longdesc": "The radius of the circle",
# "max": 1,
# "min": 0,
# "name": "r",
# "shortdesc": "Radius",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.x",
# "default": 0,
# "label": "Center X",
# "longdesc": "The position of the center on the X axis",
# "max": 1,
# "min": -1,
# "name": "cx",
# "shortdesc": "Center.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": 0,
# "label": "Center Y",
# "longdesc": "The position of the center on the Y axis",
# "max": 1,
# "min": -1,
# "name": "cy",
# "shortdesc": "Center.y",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdcirclerepeat.mmg
#Repeats its input shape around a circle
#Output:
#Out, sdf2d (float) (property)
#$in(circle_repeat_transform_2d($uv-vec2(0.5), $c)+vec2(0.5))
#Input:
#in, float (sdf2d), default : 0
#count, int, min: 1, max: 32, default: 6
#----------------------
#sdelongation.mmg
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "name": "in",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "sdf2d": "$in($uv-clamp($uv-vec2(0.5), -vec2($x, $y), vec2($x, $y)))",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Rect1.x",
# "default": 0,
# "label": "X",
# "max": 1,
# "min": 0,
# "name": "x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "Rect1.y",
# "default": 0,
# "label": "Y",
# "max": 1,
# "min": 0,
# "name": "y",
# "step": 0.01,
# "type": "float"
# }
# ]
#----------------------
#sdline.mmg
#A line or a capsule shape described as a signed distance function
#vec2 $(name_uv)_sdl = sdLine($uv, vec2($ax+0.5, $ay+0.5), vec2($bx+0.5, $by+0.5));
#Outputs
#output, sdf2d (float), (output property)
#$(name_uv)_sdl.x-$r*$profile($(name_uv)_sdl.y)
#Inputs
#A, Vector2, min: -1, max: 1, step: 0.01, default: (-0.3, -0.3)
#B, Vector2, min: -1, max: 1, step: 0.01, default: (0.3, 0.3)
#width, float, min: 0, max: 1, step: 0.01, default: 0.1
#points (curve), default: 0, 0, 0, 1, 0, 0, 1, 1
#----------------------
#sdmorph.mmg
#Morphs between 2 input shapes
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The first shape, defined as a signed distance function",
# "name": "in1",
# "shortdesc": "Input1",
# "type": "sdf2d"
# },
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The second shape, defined as a signed distance function",
# "name": "in2",
# "shortdesc": "Input2",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "longdesc": "The generated hybrid shape",
# "sdf2d": "mix($in1($uv), $in2($uv), $amount)",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "None",
# "default": 0.5,
# "label": "",
# "longdesc": "The amount of the second input in the result",
# "max": 1,
# "min": 0,
# "name": "amount",
# "shortdesc": "Amount",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdngon.mmg (inc sdrotate.mmg, sdcirclerepeat.mmg)
#An n-gon described as a signed distance function
# "outputs": [
# {
# "longdesc": "The n-gon as a signed distance function",
# "sdf2d": "sdNgon(sdf2d_rotate($uv-vec2($cx, $cy), $rot*0.01745329251-1.57079632679)-vec2(0.5), $r, $n)",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "None",
# "default": 3,
# "label": "N",
# "longdesc": "The number of sides of the n-gon",
# "max": 12,
# "min": 3,
# "name": "n",
# "shortdesc": "N",
# "step": 1,
# "type": "float"
# },
# {
# "control": "Radius1.r",
# "default": 0.5,
# "label": "Radius",
# "longdesc": "The radius of the n-gon",
# "max": 1,
# "min": 0,
# "name": "r",
# "shortdesc": "Radius",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "Radius1.a",
# "default": 0,
# "label": "Rotation",
# "longdesc": "The rotation of the n-gon",
# "max": 180,
# "min": -180,
# "name": "rot",
# "shortdesc": "Rotation",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.x",
# "default": 0,
# "label": "Center X",
# "longdesc": "The position of the center on the X axis",
# "max": 0.5,
# "min": -0.5,
# "name": "cx",
# "shortdesc": "Center.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": 0,
# "label": "Center Y",
# "longdesc": "The position of the center on the Y axis",
# "max": 0.5,
# "min": -0.5,
# "name": "cy",
# "shortdesc": "Center.y",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdpolygon.mmg
#A polygon as a signed distance function
#Output:
#Out, sdf2d (float) (property)
#sdPolygon_$(name)($uv)
#Input:
#polygon points, default: 0.2, 0.2, 0.4, 0.7, 0.7, 0.4
#----------------------
#sdrepeat.mmg
#Repeats its input shape on a grid.This node does not support overlapping between instances.
#Output:
#Out, sdf2d (float) (property)
#$in(repeat_2d($uv, vec2(1.0/$rx, 1.0/$ry), float($seed), $r))
#Input:
#in, float (sdf2d), default : 0
#x, int, min: 1, max: 32, default: 4
#y, int, min: 1, max: 32, default: 4
#random_rotation, min: 0, max: 1, step:0.01, default: 0.5
#----------------------
#sdrhombus.mmg
#A rhombus described as a signed distance function
# "outputs": [
# {
# "longdesc": "The rhombus as a signed distance function",
# "sdf2d": "sdRhombus($uv-vec2($cx+0.5, $cy+0.5), vec2($w, $h))",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Rect1.x",
# "default": 0.5,
# "label": "Width",
# "longdesc": "The width of the rhombus",
# "max": 1,
# "min": 0,
# "name": "w",
# "shortdesc": "Width",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "Rect1.y",
# "default": 1,
# "label": "Height",
# "longdesc": "The height of the rhombus",
# "max": 1,
# "min": 0,
# "name": "h",
# "shortdesc": "Height",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.x",
# "default": 0,
# "label": "Center X",
# "longdesc": "The position of the center on the X axis",
# "max": 1,
# "min": -1,
# "name": "cx",
# "shortdesc": "Center.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": 0,
# "label": "Center Y",
# "longdesc": "The position of the center on the Y axis",
# "max": 1,
# "min": -1,
# "name": "cy",
# "shortdesc": "Center.y",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdrotate.mmg
#Rotates its input shape described as a signed distance function
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The input shape, defined as a signed distance function",
# "name": "in",
# "shortdesc": "Input",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "longdesc": "The rotated shape",
# "sdf2d": "$in(sdf2d_rotate($uv, $a*0.01745329251))",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Radius1.a",
# "default": 0,
# "label": "",
# "longdesc": "The rotation angle",
# "max": 180,
# "min": -180,
# "name": "a",
# "shortdesc": "Angle",
# "step": 1,
# "type": "float"
# }
# ],
#----------------------
#sdroundedshape.mmg
#Dilates an input shape into a rounded shape
#Output:
#Out, sdf2d (float) (property)
#$in($uv)-$r
#Input:
#in, float (sdf2d), default : 0
#radius, min: 0, max: 1, step:0.01, default: 0
#----------------------
#sdscale.mmg
#Scales its input shape described as a signed distance function
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The input shape, defined as a signed distance function",
# "name": "in",
# "shortdesc": "Input",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "longdesc": "The generated scaled shape",
# "sdf2d": "$in(($uv-vec2(0.5))/$s+vec2(0.5))*$s",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "Scale1.x",
# "default": 1,
# "label": "",
# "longdesc": "The scale of the transform",
# "max": 5,
# "min": 0,
# "name": "s",
# "shortdesc": "Scale",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdshow.mmg
#Creates a greyscale image from a shape described as a 2D Signed Distance Function
#Output
#Output float (color) - Shows the shape as a greyscale image
#clamp($base-$in($uv)/max($bevel, 0.00001), 0.0, 1.0)
#Input:
#Input (sdf - shape), default: 0 - sdf2d - universal input
#bevel, float, min 0, max 1, step 0.01, default 0
#base, float, min 0, max 1, step 0.01, default 0
#----------------------
#sdsmoothboolean.mmg
#Performs a smooth boolean operation (union, intersection or difference) between two shapes
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The first shape, defined as a signed distance function",
# "name": "in1",
# "shortdesc": "Input1",
# "type": "sdf2d"
# },
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The second shape, defined as a signed distance function",
# "name": "in2",
# "shortdesc": "Input2",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "longdesc": "The shape generated by the boolean operation",
# "sdf2d": "sdSmooth$op($in1($uv), $in2($uv), $k)",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "default": 0,
# "label": "",
# "longdesc": "The operation performed by this node",
# "name": "op",
# "shortdesc": "Operation",
# "type": "enum",
# "values": [
# {
# "name": "Union",
# "value": "Union"
# },
# {
# "name": "Subtraction",
# "value": "Subtraction"
# },
# {
# "name": "Intersection",
# "value": "Intersection"
# }
# ]
# },
# {
# "control": "None",
# "default": 0,
# "label": "",
# "longdesc": "The smoothness of the boolean operation",
# "max": 1,
# "min": 0,
# "name": "k",
# "shortdesc": "Smoothness",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#sdtranslate.mmg
#Translates its input shape described as signed distance function
# "inputs": [
# {
# "default": "0.0",
# "label": "",
# "longdesc": "The input shape, defined as a signed distance function",
# "name": "in",
# "shortdesc": "Input",
# "type": "sdf2d"
# }
# ],
# "outputs": [
# {
# "longdesc": "The translated shape",
# "sdf2d": "$in($uv-vec2($x, $y))",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "control": "P1.x",
# "default": 0,
# "label": "X",
# "longdesc": "The translation along the X axis",
# "max": 1,
# "min": -1,
# "name": "x",
# "shortdesc": "Translate.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": 0,
# "label": "Y",
# "longdesc": "The translation along the Y axis",
# "max": 1,
# "min": -1,
# "name": "y",
# "shortdesc": "Translate.y",
# "step": 0.01,
# "type": "float"
# }
# ],
#----------------------
#curve.mmg
# "code": "vec2 $(name_uv)_bezier = sdBezier($uv, vec2($ax+0.5, $ay+0.5), vec2($bx+0.5, $by+0.5), vec2($cx+0.5, $cy+0.5));\nvec2 $(name_uv)_uv = vec2($(name_uv)_bezier.x, $(name_uv)_bezier.y/$width+0.5);\nvec2 $(name_uv)_uvtest = step(vec2(0.5), abs($(name_uv)_uv-vec2(0.5)));\n$(name_uv)_uv = mix(vec2(fract($repeat*$(name_uv)_uv.x), $(name_uv)_uv.y), vec2(0.0), max($(name_uv)_uvtest.x, $(name_uv)_uvtest.y));\n",
# "inputs": [
# {
# "default": "vec4(vec3(step(abs($uv.y-0.5), 0.4999)), 1.0)",
# "label": "",
# "longdesc": "Input pattern to be drawn along the curve",
# "name": "in",
# "shortdesc": "Pattern",
# "type": "rgba"
# }
# ],
# "outputs": [
# {
# "longdesc": "An image showing the specified curve",
# "rgba": "$in($(name_uv)_uv)",
# "shortdesc": "Output",
# "type": "rgba"
# }
# ],
# "parameters": [
# {
# "control": "P1.x",
# "default": -0.3,
# "label": "AX",
# "longdesc": "Position on X axis of the first control point",
# "max": 0.5,
# "min": -0.5,
# "name": "ax",
# "shortdesc": "A.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P1.y",
# "default": -0.1,
# "label": "AY",
# "longdesc": "Position on Y axis of the first control point",
# "max": 0.5,
# "min": -0.5,
# "name": "ay",
# "shortdesc": "A.y",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P3.x",
# "default": -0,
# "label": "BX",
# "longdesc": "Position on X axis of the second control point",
# "max": 0.5,
# "min": -0.5,
# "name": "bx",
# "shortdesc": "B.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P3.y",
# "default": 0.2,
# "label": "BY",
# "longdesc": "Position on Y axis of the second control point",
# "max": 0.5,
# "min": -0.5,
# "name": "by",
# "shortdesc": "B.y",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P2.x",
# "default": 0.3,
# "label": "CX",
# "longdesc": "Position on X axis of the third control point",
# "max": 0.5,
# "min": -0.5,
# "name": "cx",
# "shortdesc": "C.x",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "P2.y",
# "default": -0.1,
# "label": "CY",
# "longdesc": "Position on Y axis of the third control point",
# "max": 0.5,
# "min": -0.5,
# "name": "cy",
# "shortdesc": "C.y",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "None",
# "default": 0.1,
# "label": "Width",
# "longdesc": "Width of the curve pattern",
# "max": 0.5,
# "min": 0,
# "name": "width",
# "shortdesc": "Width",
# "step": 0.01,
# "type": "float"
# },
# {
# "control": "None",
# "default": 1,
# "label": "Repeat",
# "longdesc": "Number of repetitions of the input pattern",
# "max": 16,
# "min": 1,
# "name": "repeat",
# "shortdesc": "Repeat",
# "step": 1,
# "type": "float"
# }
# ]
#----------------------
#sdannularshape.mmg
#Creates an annular shape from a shape described as a signed distance function
#Output
#Output float (color) - Shows the shape as a greyscale image
#sdRipples($in($uv), $r, int($ripples))
#Input:
#Input (sdf - shape), default: 0 - sdf2d - universal input
#width, float, min 0, max 1, step 0.01, default 0
#rippples, int, min 1, max 16, default 1
#----------------------
#sd_mask_to_sdf.mmg
#{
# "connections": [
# {
# "from": "6520",
# "from_port": 0,
# "to": "gen_outputs",
# "to_port": 0
# },
# {
# "from": "edge_detect",
# "from_port": 0,
# "to": "1823",
# "to_port": 0
# },
# {
# "from": "gen_inputs",
# "from_port": 0,
# "to": "buffer_2",
# "to_port": 0
# },
# {
# "from": "buffer_2",
# "from_port": 0,
# "to": "6520",
# "to_port": 1
# },
# {
# "from": "buffer_2",
# "from_port": 0,
# "to": "tones_step",
# "to_port": 0
# },
# {
# "from": "tones_step",
# "from_port": 0,
# "to": "edge_detect",
# "to_port": 0
# },
# {
# "from": "1823",
# "from_port": 0,
# "to": "iterate_buffer",
# "to_port": 0
# },
# {
# "from": "2434_8",
# "from_port": 0,
# "to": "iterate_buffer",
# "to_port": 1
# },
# {
# "from": "iterate_buffer",
# "from_port": 0,
# "to": "6520",
# "to_port": 0
# },
# {
# "from": "24282_2",
# "from_port": 0,
# "to": "2434_8",
# "to_port": 0
# },
# {
# "from": "iterate_buffer",
# "from_port": 1,
# "to": "24282_2",
# "to_port": 0
# }
# ],
# "label": "Mask to SDF",
# "longdesc": "",
# "name": "sd_mask_to_sdf",
# "node_position": {
# "x": 0,
# "y": 0
# },
# "nodes": [
# {
# "name": "iterate_buffer",
# "node_position": {
# "x": 76.700005,
# "y": -249.817047
# },
# "parameters": {
# "filter": false,
# "iterations": 30,
# "mipmap": false,
# "size": 10
# },
# "seed_value": 29168,
# "type": "iterate_buffer"
# },
# {
# "name": "2434_8",
# "node_position": {
# "x": 91.099991,
# "y": -9.031479
# },
# "parameters": {
# "distance": 0,
# "size": 10
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(-1.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# }
# ],
# "instance": "vec3 $(name)_jump_flood(vec2 uv, float size) {\n\tivec2 int_uv = ivec2(uv * size);\n\tfloat best_distance = 9999.9;\n\tvec2 best_coord;\n\tfloat iter = $in(uv).b;\n\titer += 0.01;\n\tfloat step_width = size / 4.0 / (iter * 100.0);\n\t\n\tfor (int x = -1; x <= 1; x++) {\n\t\tfor (int y = -1; y <= 1; y++) {\n\t\t\tivec2 offsetUV = int_uv + ivec2(x, y) * int(step_width);\n\t\t\tvec2 float_uv = vec2(offsetUV) / size;\n\t\t\tvec2 offset_pos = $in(float_uv).rg;\n\t\t\t\n\t\t\tif (offset_pos.x != 0.0 && offset_pos.y != 0.0) {\n\t\t\t\tvec2 diff = offset_pos - uv;\n\t\t\t\t//float dist = dot(diff, diff);\n\t\t\t\t$distance\n\t\t\t\tif (dist < best_distance) {\n\t\t\t\t\tbest_distance = dist;\n\t\t\t\t\tbest_coord = offset_pos;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t\n\treturn vec3(best_coord, iter);\n}",
# "name": "Jump Flood",
# "outputs": [
# {
# "rgb": "$(name)_jump_flood($uv, $size)",
# "type": "rgb"
# }
# ],
# "parameters": [
# {
# "default": 10,
# "first": 0,
# "label": "",
# "last": 13,
# "name": "size",
# "type": "size"
# },
# {
# "default": 0,
# "label": "",
# "name": "distance",
# "type": "enum",
# "values": [
# {
# "name": "Euclidean",
# "value": "float dist = dot(diff, diff);"
# },
# {
# "name": "Manhattan",
# "value": "float dist = abs(diff.x) + abs(diff.y);"
# },
# {
# "name": "Chebyshev",
# "value": "float dist = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);"
# }
# ]
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "1823",
# "node_position": {
# "x": -269.899872,
# "y": -18.741766
# },
# "parameters": {
#
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "1.0",
# "label": "",
# "name": "in",
# "type": "f"
# }
# ],
# "instance": "",
# "name": "Mask to UV Mask",
# "outputs": [
# {
# "rgb": "$in($uv) < .5 ? vec3(0.0) : vec3($uv, 0.0)",
# "type": "rgb"
# }
# ],
# "parameters": [
#
# ]
# },
# "type": "shader"
# },
# {
# "name": "edge_detect",
# "node_position": {
# "x": -286.951447,
# "y": -137.078964
# },
# "parameters": {
# "size": 10,
# "threshold": 0.4,
# "width": 1
# },
# "type": "edge_detect"
# },
# {
# "name": "6520",
# "node_position": {
# "x": 364.156525,
# "y": -261.873169
# },
# "parameters": {
# "distance": 0,
# "tiled": false
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(0.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# },
# {
# "default": "0.0",
# "function": true,
# "label": "",
# "name": "mask",
# "type": "f"
# }
# ],
# "instance": "float $(name)_distance(vec2 uv, bool tiled) {\n\tif (tiled) {\n\t\tuv = fract(uv);\n\t}\n\tvec2 custom_uv = $in(uv).xy;\n\tvec2 diff = custom_uv != vec2(0.0) ? custom_uv - uv : vec2(1.0);\n\t$distance\n\tif (!tiled) {\n\t\tuv = clamp(uv, 0.0, 1.0);\n\t}\n\treturn $mask(uv) < 0.5 ? distance : -distance;\n}",
# "name": "Calculate Distance",
# "outputs": [
# {
# "sdf2d": "$(name)_distance($uv, $tiled)",
# "type": "sdf2d"
# }
# ],
# "parameters": [
# {
# "default": false,
# "label": "Tiled",
# "name": "tiled",
# "type": "boolean"
# },
# {
# "default": 0,
# "label": "",
# "name": "distance",
# "type": "enum",
# "values": [
# {
# "name": "Euclidean",
# "value": "float distance = length(diff);"
# },
# {
# "name": "Manhattan",
# "value": "float distance = abs(diff.x) + abs(diff.y);"
# },
# {
# "name": "Chebyshev",
# "value": "float distance = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);"
# }
# ]
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "gen_inputs",
# "node_position": {
# "x": -735.85144,
# "y": -352.006775
# },
# "parameters": {
#
# },
# "ports": [
# {
# "group_size": 0,
# "longdesc": "The greyscale mask to be converted",
# "name": "mask",
# "shortdesc": "Mask",
# "type": "f"
# }
# ],
# "type": "ios"
# },
# {
# "name": "gen_outputs",
# "node_position": {
# "x": 646.256348,
# "y": -263.285461
# },
# "parameters": {
#
# },
# "ports": [
# {
# "group_size": 0,
# "longdesc": "The genrated distance field",
# "name": "sdf",
# "shortdesc": "Output",
# "type": "sdf2d"
# }
# ],
# "type": "ios"
# },
# {
# "name": "gen_parameters",
# "node_position": {
# "x": -47.67952,
# "y": -541.979187
# },
# "parameters": {
# "param0": 10,
# "param1": 30,
# "param2": false,
# "param3": 0
# },
# "type": "remote",
# "widgets": [
# {
# "label": "Size",
# "linked_widgets": [
# {
# "node": "iterate_buffer",
# "widget": "size"
# },
# {
# "node": "2434_8",
# "widget": "size"
# },
# {
# "node": "buffer_2",
# "widget": "size"
# },
# {
# "node": "edge_detect",
# "widget": "size"
# }
# ],
# "longdesc": "The resolution used for the operation",
# "name": "param0",
# "shortdesc": "Size",
# "type": "linked_control"
# },
# {
# "label": "Iterations",
# "linked_widgets": [
# {
# "node": "iterate_buffer",
# "widget": "iterations"
# }
# ],
# "longdesc": "The number of iterations the jump flood algorithm performs to calculate the distances",
# "name": "param1",
# "shortdesc": "Iterations",
# "type": "linked_control"
# },
# {
# "label": "Tiled",
# "linked_widgets": [
# {
# "node": "24282_2",
# "widget": "tiled"
# },
# {
# "node": "6520",
# "widget": "tiled"
# }
# ],
# "longdesc": "Controls whether the resulting ditance field will be tiled. Useful for patterns that extend over the texture bounds",
# "name": "param2",
# "shortdesc": "Tiled",
# "type": "linked_control"
# },
# {
# "label": "Distance",
# "linked_widgets": [
# {
# "node": "2434_8",
# "widget": "distance"
# },
# {
# "node": "6520",
# "widget": "distance"
# }
# ],
# "name": "param3",
# "shortdesc": "Distance function",
# "type": "linked_control"
# }
# ]
# },
# {
# "name": "buffer_2",
# "node_position": {
# "x": -297.702789,
# "y": -348.41391
# },
# "parameters": {
# "size": 10
# },
# "type": "buffer",
# "version": 1
# },
# {
# "name": "tones_step",
# "node_position": {
# "x": -294.947968,
# "y": -258.84549
# },
# "parameters": {
# "invert": false,
# "value": 0.5,
# "width": 0
# },
# "type": "tones_step"
# },
# {
# "name": "24282_2",
# "node_position": {
# "x": 114.391708,
# "y": -90.765732
# },
# "parameters": {
# "tiled": false
# },
# "shader_model": {
# "code": "vec3 $(name_uv)_in = $in(fract($uv));\nvec3 $(name_uv)_tiled = $(name_uv)_in.xy != vec2(0.0) ? $(name_uv)_in + vec3(floor($uv), 0.0) : $(name_uv)_in;",
# "global": "",
# "inputs": [
# {
# "default": "vec3(1.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# }
# ],
# "instance": "",
# "name": "Tiling",
# "outputs": [
# {
# "rgb": "$tiled ? $(name_uv)_tiled : $(name_uv)_in",
# "type": "rgb"
# }
# ],
# "parameters": [
# {
# "default": false,
# "label": "Tiled",
# "name": "tiled",
# "type": "boolean"
# }
# ]
# },
# "type": "shader"
# },
# {
# "connections": [
# {
# "from": "edge_detect",
# "from_port": 0,
# "to": "1823",
# "to_port": 0
# },
# {
# "from": "tones_step",
# "from_port": 0,
# "to": "edge_detect",
# "to_port": 0
# },
# {
# "from": "1823",
# "from_port": 0,
# "to": "iterate_buffer",
# "to_port": 0
# },
# {
# "from": "2434_8",
# "from_port": 0,
# "to": "iterate_buffer",
# "to_port": 1
# },
# {
# "from": "iterate_buffer",
# "from_port": 0,
# "to": "6520",
# "to_port": 0
# },
# {
# "from": "24282_2",
# "from_port": 0,
# "to": "2434_8",
# "to_port": 0
# },
# {
# "from": "iterate_buffer",
# "from_port": 1,
# "to": "24282_2",
# "to_port": 0
# },
# {
# "from": "iterate_buffer",
# "from_port": 0,
# "to": "2153",
# "to_port": 1
# },
# {
# "from": "buffer_2",
# "from_port": 0,
# "to": "tones_step",
# "to_port": 0
# },
# {
# "from": "gen_inputs",
# "from_port": 1,
# "to": "2153",
# "to_port": 0
# },
# {
# "from": "2153",
# "from_port": 0,
# "to": "11582",
# "to_port": 1
# },
# {
# "from": "gen_inputs",
# "from_port": 1,
# "to": "11582",
# "to_port": 2
# },
# {
# "from": "11582",
# "from_port": 0,
# "to": "gen_outputs",
# "to_port": 0
# },
# {
# "from": "8064",
# "from_port": 0,
# "to": "2153",
# "to_port": 2
# },
# {
# "from": "gen_inputs",
# "from_port": 0,
# "to": "8064",
# "to_port": 0
# },
# {
# "from": "8064",
# "from_port": 0,
# "to": "buffer_2",
# "to_port": 0
# },
# {
# "from": "buffer_2",
# "from_port": 0,
# "to": "6520",
# "to_port": 1
# },
# {
# "from": "6520",
# "from_port": 0,
# "to": "11582",
# "to_port": 0
# }
# ],
# "label": "Dilate 2",
# "longdesc": "",
# "name": "graph_3",
# "node_position": {
# "x": 515.555786,
# "y": -545.049744
# },
# "nodes": [
# {
# "name": "iterate_buffer",
# "node_position": {
# "x": 64.900002,
# "y": -259.215881
# },
# "parameters": {
# "filter": false,
# "iterations": 30,
# "mipmap": false,
# "size": 9
# },
# "seed_value": 29168,
# "type": "iterate_buffer"
# },
# {
# "name": "2434_8",
# "node_position": {
# "x": 102.099998,
# "y": 15.367363
# },
# "parameters": {
# "distance": 0,
# "size": 9
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(-1.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# }
# ],
# "instance": "vec3 $(name)_jump_flood(vec2 uv, float size) {\n\tivec2 int_uv = ivec2(uv * size);\n\tfloat best_distance = 9999.9;\n\tvec2 best_coord;\n\tfloat iter = $in(uv).b;\n\titer += 0.01;\n\tfloat step_width = size / 4.0 / (iter * 100.0);\n\t\n\tfor (int x = -1; x <= 1; x++) {\n\t\tfor (int y = -1; y <= 1; y++) {\n\t\t\tivec2 offsetUV = int_uv + ivec2(x, y) * int(step_width);\n\t\t\tvec2 float_uv = vec2(offsetUV) / size;\n\t\t\tvec2 offset_pos = $in(float_uv).rg;\n\t\t\t\n\t\t\tif (offset_pos.x != 0.0 && offset_pos.y != 0.0) {\n\t\t\t\tvec2 diff = offset_pos - uv;\n\t\t\t\t//float dist = dot(diff, diff);\n\t\t\t\t//float dist = abs(diff.x) + abs(diff.y);\n\t\t\t\t//float dist = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);\n\t\t\t\t$distance\n\t\t\t\tif (dist < best_distance) {\n\t\t\t\t\tbest_distance = dist;\n\t\t\t\t\tbest_coord = offset_pos;\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t}\n\t\n\treturn vec3(best_coord, iter);\n}",
# "name": "Jump Flood",
# "outputs": [
# {
# "rgb": "$(name)_jump_flood($uv, $size)",
# "type": "rgb"
# }
# ],
# "parameters": [
# {
# "default": 10,
# "first": 0,
# "label": "",
# "last": 13,
# "name": "size",
# "type": "size"
# },
# {
# "default": 2,
# "label": "",
# "name": "distance",
# "type": "enum",
# "values": [
# {
# "name": "Euclidean",
# "value": "float dist = dot(diff, diff);"
# },
# {
# "name": "Manhattan",
# "value": "float dist = abs(diff.x) + abs(diff.y);"
# },
# {
# "name": "Chebyshev",
# "value": "float dist = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);"
# }
# ]
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "1823",
# "node_position": {
# "x": -269.899872,
# "y": -17.741766
# },
# "parameters": {
#
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "1.0",
# "label": "",
# "name": "in",
# "type": "f"
# }
# ],
# "instance": "",
# "name": "Mask to UV Mask",
# "outputs": [
# {
# "rgb": "$in($uv) < .5 ? vec3(0.0) : vec3($uv, 0.0)",
# "type": "rgb"
# }
# ],
# "parameters": [
#
# ]
# },
# "type": "shader"
# },
# {
# "name": "edge_detect",
# "node_position": {
# "x": -286.951447,
# "y": -137.078964
# },
# "parameters": {
# "size": 9,
# "threshold": 0.4,
# "width": 1
# },
# "type": "edge_detect"
# },
# {
# "name": "6520",
# "node_position": {
# "x": 347.356567,
# "y": -346.449127
# },
# "parameters": {
# "distance": 0,
# "length": 0.1
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(0.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# },
# {
# "default": "0.0",
# "function": true,
# "label": "",
# "name": "mask",
# "type": "f"
# }
# ],
# "instance": "float $(name)_distance(vec2 uv, float length) {\n\tvec2 custom_uv = $in(fract(uv)).xy;\n\tvec2 diff = custom_uv != vec2(0.0) ? custom_uv - fract(uv) : vec2(1.0);\n\t//float distance = length(diff);\n\t//float distance = abs(diff.x) + abs(diff.y);\n\t//float distance = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);\n\t$distance\n\tif (length >= 0.0) {\n\t\treturn $mask(uv) < 0.5 ? clamp(1.0 - (distance / length), 0.0, 1.0) : 1.0;\n\t} else {\n\t\treturn $mask(uv) > 0.5 ? clamp((distance / -length), 0.0, 1.0) : 0.0;\n\t}\n}",
# "name": "Calculate Distance",
# "outputs": [
# {
# "f": "$(name)_distance($uv, $length)",
# "type": "f"
# }
# ],
# "parameters": [
# {
# "control": "None",
# "default": 0.1,
# "label": "Length",
# "max": 1,
# "min": -1,
# "name": "length",
# "step": 0.01,
# "type": "float"
# },
# {
# "default": 2,
# "label": "",
# "name": "distance",
# "type": "enum",
# "values": [
# {
# "name": "Euclidean",
# "value": "float distance = length(diff);"
# },
# {
# "name": "Manhattan",
# "value": "float distance = abs(diff.x) + abs(diff.y);"
# },
# {
# "name": "Chebyshev",
# "value": "float distance = abs(diff.x) > abs(diff.y) ? abs(diff.x) : abs(diff.y);"
# }
# ]
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "gen_inputs",
# "node_position": {
# "x": -793.451477,
# "y": -236.812195
# },
# "parameters": {
#
# },
# "ports": [
# {
# "group_size": 0,
# "longdesc": "The greyscale mask to be converted",
# "name": "mask",
# "shortdesc": "Mask",
# "type": "f"
# },
# {
# "group_size": 0,
# "longdesc": "",
# "name": "source",
# "shortdesc": "Source",
# "type": "rgb"
# }
# ],
# "type": "ios"
# },
# {
# "name": "gen_outputs",
# "node_position": {
# "x": 885.056335,
# "y": -247.896317
# },
# "parameters": {
#
# },
# "ports": [
# {
# "group_size": 0,
# "longdesc": "Shows the dilated image",
# "name": "out",
# "shortdesc": "Output",
# "type": "rgb"
# }
# ],
# "type": "ios"
# },
# {
# "name": "gen_parameters",
# "node_position": {
# "x": 61.520477,
# "y": -639.339172
# },
# "parameters": {
# "param0": 9,
# "param1": 0.1,
# "param2": 0,
# "param3": 0,
# "param4": 30
# },
# "type": "remote",
# "widgets": [
# {
# "label": "",
# "linked_widgets": [
# {
# "node": "iterate_buffer",
# "widget": "size"
# },
# {
# "node": "2434_8",
# "widget": "size"
# },
# {
# "node": "buffer_2",
# "widget": "size"
# },
# {
# "node": "edge_detect",
# "widget": "size"
# }
# ],
# "longdesc": "The resolution of the input images",
# "name": "param0",
# "shortdesc": "Size",
# "type": "linked_control"
# },
# {
# "label": "",
# "linked_widgets": [
# {
# "node": "6520",
# "widget": "length"
# }
# ],
# "longdesc": "The length of the dilate effect",
# "name": "param1",
# "shortdesc": "Length",
# "type": "linked_control"
# },
# {
# "label": "",
# "linked_widgets": [
# {
# "node": "11582",
# "widget": "fill"
# }
# ],
# "longdesc": "0 to generate a gradient to black while dilating, 1 to fill with input color",
# "name": "param2",
# "shortdesc": "Fill",
# "type": "linked_control"
# },
# {
# "label": "",
# "linked_widgets": [
# {
# "node": "2434_8",
# "widget": "distance"
# },
# {
# "node": "6520",
# "widget": "distance"
# }
# ],
# "name": "param3",
# "shortdesc": "Distance Function",
# "type": "linked_control"
# },
# {
# "label": "",
# "linked_widgets": [
# {
# "node": "iterate_buffer",
# "widget": "iterations"
# }
# ],
# "longdesc": "The number of iterations the jump flood algorithm performs to calculate the distances",
# "name": "param4",
# "shortdesc": "Iterations",
# "type": "linked_control"
# }
# ]
# },
# {
# "name": "buffer_2",
# "node_position": {
# "x": -294.502808,
# "y": -340.816589
# },
# "parameters": {
# "size": 9
# },
# "type": "buffer",
# "version": 1
# },
# {
# "name": "tones_step",
# "node_position": {
# "x": -285.347992,
# "y": -253.248215
# },
# "parameters": {
# "invert": false,
# "value": 0.5,
# "width": 0
# },
# "type": "tones_step"
# },
# {
# "name": "24282_2",
# "node_position": {
# "x": 109.591705,
# "y": -88.567284
# },
# "parameters": {
# "tiled": true
# },
# "shader_model": {
# "code": "vec3 $(name_uv)_in = $in(fract($uv));\nvec3 $(name_uv)_tiled = $(name_uv)_in.xy != vec2(0.0) ? $(name_uv)_in + vec3(floor($uv), 0.0) : $(name_uv)_in;",
# "global": "",
# "inputs": [
# {
# "default": "vec3(1.0)",
# "function": true,
# "label": "",
# "name": "in",
# "type": "rgb"
# }
# ],
# "instance": "",
# "name": "Tiling",
# "outputs": [
# {
# "rgb": "$tiled ? $(name_uv)_tiled : $(name_uv)_in",
# "type": "rgb"
# }
# ],
# "parameters": [
# {
# "default": false,
# "label": "Tiled",
# "name": "tiled",
# "type": "boolean"
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "2153",
# "node_position": {
# "x": 368.85202,
# "y": -157.100906
# },
# "parameters": {
#
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(1.0)",
# "label": "Source",
# "name": "source",
# "type": "rgb"
# },
# {
# "default": "$uv",
# "label": "Custom UV",
# "name": "custom_uv",
# "type": "rgb"
# },
# {
# "default": "0.0",
# "label": "Mask",
# "name": "mask",
# "type": "f"
# }
# ],
# "instance": "",
# "name": "Dilate UV",
# "outputs": [
# {
# "rgb": "$mask($uv) < 0.5 ? $source($custom_uv($uv).xy) : $source($uv)",
# "type": "rgb"
# }
# ],
# "parameters": [
#
# ]
# },
# "type": "shader"
# },
# {
# "name": "11582",
# "node_position": {
# "x": 609.343445,
# "y": -239.746399
# },
# "parameters": {
# "fill": 0
# },
# "shader_model": {
# "code": "float $(name_uv)_dist = $distance($uv);\nvec3 $(name_uv)_color = mix($source(fract($uv)), $fill_raw(fract($uv)), float( $(name_uv)_dist != 0.0 ) );\nvec3 $(name_uv)_mix = mix($(name_uv)_color * $(name_uv)_dist, $(name_uv)_color, $fill);",
# "global": "",
# "inputs": [
# {
# "default": "0.0",
# "function": true,
# "label": "Distance",
# "name": "distance",
# "type": "f"
# },
# {
# "default": "vec3(1.0)",
# "function": true,
# "label": "Fill Raw",
# "name": "fill_raw",
# "type": "rgb"
# },
# {
# "default": "vec3(1.0)",
# "function": true,
# "label": "Source",
# "name": "source",
# "type": "rgb"
# }
# ],
# "instance": "",
# "name": "Dilate Combine",
# "outputs": [
# {
# "rgb": "$(name_uv)_mix",
# "type": "rgb"
# }
# ],
# "parameters": [
# {
# "control": "None",
# "default": 0,
# "label": "Fill",
# "max": 1,
# "min": 0,
# "name": "fill",
# "step": 0.01,
# "type": "float"
# }
# ]
# },
# "type": "shader"
# },
# {
# "name": "8064",
# "node_position": {
# "x": -282.533325,
# "y": -433.011169
# },
# "parameters": {
#
# },
# "shader_model": {
# "code": "",
# "global": "",
# "inputs": [
# {
# "default": "vec3(0.0)",
# "label": "",
# "name": "in",
# "type": "rgb"
# }
# ],
# "instance": "",
# "name": "Default Value",
# "outputs": [
# {
# "rgb": "$in($uv)",
# "type": "rgb"
# }
# ],
# "parameters": [
#
# ]
# },
# "type": "shader"
# }
# ],
# "parameters": {
# "param0": 9,
# "param1": 0.1,
# "param2": 0,
# "param3": 0,
# "param4": 30
# },
# "shortdesc": "",
# "type": "graph"
# }
# ],
# "parameters": {
# "param0": 10,
# "param1": 30,
# "param2": false,
# "param3": 0
# },
# "shortdesc": "",
# "type": "graph"
#}
static func sdf_show(val : float, bevel : float) -> Color:
var f : float = clamp(-val / max(bevel, 0.00001), 0.0, 1.0);
return Color(f, f, f, 1)
static func sdf_circle(uv : Vector2, c : Vector2, r : float) -> float:
c.x += 0.5
c.y += 0.5
return (uv - c).length() - r;
static func sdf_box(uv : Vector2, c : Vector2, wh : Vector2) -> float:
c.x += 0.5
c.y += 0.5
var d : Vector2 = Commons.absv2(uv - c) - wh
return Commons.maxv2(d, Vector2(0, 0)).length() + min(max(d.x, d.y), 0.0)
#vec2 $(name_uv)_sdl = sdLine($uv, vec2($ax+0.5, $ay+0.5), vec2($bx+0.5, $by+0.5));
static func sdf_line(uv : Vector2, a : Vector2, b : Vector2, r : float) -> Vector2:
a.x += 0.5
a.y += 0.5
b.x += 0.5
b.y += 0.5
return sdLine(uv, a, b)
static func sdf_rhombus(uv : Vector2, c : Vector2, wh : Vector2) -> float:
c.x += 0.5
c.y += 0.5
return sdRhombus(uv - c, wh);
static func sdf_arc(uv : Vector2, a : Vector2, r : Vector2) -> float:
return sdArc(uv - Vector2(0.5, 0.5), Commons.modf(a.x, 360.0) * 0.01745329251, Commons.modf(a.y, 360.0)*0.01745329251, r.x, r.y)
#float sdr_ndot(vec2 a, vec2 b) {
# return a.x*b.x - a.y*b.y;
#}
static func sdr_ndot(a : Vector2, b : Vector2) -> float:
return a.x * b.x - a.y * b.y;
#float sdRhombus(in vec2 p, in vec2 b) {
# vec2 q = abs(p);
# float h = clamp((-2.0*sdr_ndot(q,b)+sdr_ndot(b,b))/dot(b,b),-1.0,1.0);
# float d = length( q - 0.5*b*vec2(1.0-h,1.0+h) );
# return d * sign( q.x*b.y + q.y*b.x - b.x*b.y );
#}
static func sdRhombus(p : Vector2, b : Vector2) -> float:
var q : Vector2 = Commons.absv2(p);
var h : float = clamp((-2.0 * sdr_ndot(q,b) + sdr_ndot(b,b)) / b.dot(b), -1.0, 1.0);
var d : float = ( q - 0.5*b * Vector2(1.0-h, 1.0+h)).length()
return d * sign(q.x*b.y + q.y*b.x - b.x*b.y)
#float sdArc(vec2 p, float a1, float a2, float ra, float rb) {
# float amid = 0.5*(a1+a2)+1.6+3.14*step(a1, a2);
# float alength = 0.5*(a1-a2)-1.6+3.14*step(a1, a2);
#
# vec2 sca = vec2(cos(amid), sin(amid));
# vec2 scb = vec2(cos(alength), sin(alength));
# p *= mat2(vec2(sca.x,sca.y),vec2(-sca.y,sca.x));
# p.x = abs(p.x);
#
# float k = (scb.y*p.x>scb.x*p.y) ? dot(p.xy,scb) : length(p.xy);
# return sqrt( dot(p,p) + ra*ra - 2.0*ra*k ) - rb;
#}
static func sdArc(p : Vector2, a1 : float, a2 : float, ra : float, rb : float) -> float:
var amid : float = 0.5*(a1+a2)+1.6+3.14 * Commons.step(a1, a2);
var alength : float = 0.5*(a1-a2)-1.6+3.14 * Commons.step(a1, a2);
var sca : Vector2 = Vector2(cos(amid), sin(amid));
var scb : Vector2 = Vector2(cos(alength), sin(alength));
#p *= Matrix(Vector2(sca.x , sca.y), Vector2(-sca.y, sca.x));
var pt : Vector2 = p
p.x = pt.x * sca.x + pt.y * sca.y
p.y = pt.x * -sca.y + pt.y * sca.x
p.x = abs(p.x);
var k : float
if (scb.y * p.x > scb.x * p.y):
k = p.dot(scb)
else:
k = p.length();
return sqrt( p.dot(p) + ra * ra - 2.0 * ra * k ) - rb;
static func sdf_boolean_union(a : float, b : float) -> float:
return min(a, b)
static func sdf_boolean_substraction(a : float, b : float) -> float:
return max(-a, b)
static func sdf_boolean_intersection(a : float, b : float) -> float:
return max(a, b)
static func sdf_smooth_boolean_union(d1 : float, d2 : float, k : float) -> float:
var h : float = clamp( 0.5 + 0.5 * (d2 - d1) / k, 0.0, 1.0)
return lerp(d2, d1, h) - k * h * (1.0 - h)
static func sdf_smooth_boolean_substraction(d1 : float, d2 : float, k : float) -> float:
var h : float = clamp( 0.5 - 0.5 * (d2 + d1) / k, 0.0, 1.0)
return lerp(d2, -d1, h) + k * h * (1.0 - h)
static func sdf_smooth_boolean_intersection(d1 : float, d2 : float, k : float) -> float:
var h : float = clamp( 0.5 - 0.5 * (d2 - d1) / k, 0.0, 1.0)
return lerp(d2, d1, h) + k * h * (1.0 - h)
static func sdf_rounded_shape(a : float, r : float) -> float:
return a - r
static func sdf_annular_shape(a : float, r : float) -> float:
return abs(a) - r
static func sdf_morph(a : float, b : float, amount : float) -> float:
return lerp(a, b, amount)
#vec2 sdLine(vec2 p, vec2 a, vec2 b) {
# vec2 pa = p-a, ba = b-a;
# float h = clamp(dot(pa,ba)/dot(ba,ba), 0.0, 1.0);
# return vec2(length(pa-ba*h), h);
#}
static func sdLine(p : Vector2, a : Vector2, b : Vector2) -> Vector2:
var pa : Vector2 = p - a
var ba : Vector2 = b - a
var h : float = clamp(pa.dot(ba) / ba.dot(ba), 0.0, 1.0);
return Vector2((pa - (ba * h)).length(), h)
#Needs thought
#func sdf_translate(a : float, x : float, y : float) -> float:
# return lerp(a, b, amount)
#vec2 sdf2d_rotate(vec2 uv, float a) {
# vec2 rv;
# float c = cos(a);
# float s = sin(a);
# uv -= vec2(0.5);
# rv.x = uv.x*c+uv.y*s;
# rv.y = -uv.x*s+uv.y*c;
# return rv+vec2(0.5);
#}
static func sdf2d_rotate(uv : Vector2, a : float) -> Vector2:
var rv : Vector2;
var c : float = cos(a);
var s : float = sin(a);
uv -= Vector2(0.5, 0.5);
rv.x = uv.x*c+uv.y*s;
rv.y = -uv.x*s+uv.y*c;
return rv+Vector2(0.5, 0.5);
#float cross2( in vec2 a, in vec2 b ) {
# return a.x*b.y - a.y*b.x;
#}
#// signed distance to a quadratic bezier\n
#vec2 sdBezier( in vec2 pos, in vec2 A, in vec2 B, in vec2 C ) { \n
# vec2 a = B - A;\n
# vec2 b = A - 2.0*B + C;\n
# vec2 c = a * 2.0;\n
# vec2 d = A - pos;\n\n
# float kk = 1.0/dot(b,b);\n
# float kx = kk * dot(a,b);\n
# float ky = kk * (2.0*dot(a,a)+dot(d,b))/3.0;\n
# float kz = kk * dot(d,a); \n\n
# float res = 0.0;\n
# float sgn = 0.0;\n\n
# float p = ky - kx*kx;\n
# float p3 = p*p*p;\n
# float q = kx*(2.0*kx*kx - 3.0*ky) + kz;\n
# float h = q*q + 4.0*p3;\n\t
# float rvx;\n\n
#
# if( h>=0.0 ) {
# // 1 root\n
# h = sqrt(h);\n
# vec2 x = (vec2(h,-h)-q)/2.0;\n
# vec2 uv = sign(x)*pow(abs(x), vec2(1.0/3.0));
# rvx = uv.x+uv.y-kx;\n
# float t = clamp(rvx, 0.0, 1.0);\n
# vec2 q2 = d+(c+b*t)*t;\n
# res = dot(q2, q2);\n \t
# sgn = cross2(c+2.0*b*t, q2);\n
# } else {
# // 3 roots\n
# float z = sqrt(-p);\n
# float v = acos(q/(p*z*2.0))/3.0;\n
# float m = cos(v);\n
# float n = sin(v)*1.732050808;\n
# vec3 t = clamp(vec3(m+m,-n-m,n-m)*z-kx, 0.0, 1.0);\n
# vec2 qx=d+(c+b*t.x)*t.x;
# float dx=dot(qx, qx), sx = cross2(c+2.0*b*t.x,qx);\n
# vec2 qy=d+(c+b*t.y)*t.y;
# float dy=dot(qy, qy), sy = cross2(c+2.0*b*t.y,qy);\n
#
# if( dx<dy ) {
# res=dx; sgn=sx; rvx = t.x;
# } else {
# res=dy; sgn=sy; rvx = t.y;
# }\n
# }\n \n
#
# return vec2(rvx, sqrt(res)*sign(sgn));\n
#}
# signed distance to a quadratic bezier
static func sdBezier(pos : Vector2, A : Vector2, B : Vector2, C : Vector2) -> Vector2:
var a : Vector2 = B - A;
var b : Vector2 = A - 2.0 * B + C;
var c : Vector2 = a * 2.0;
var d : Vector2 = A - pos;
var kk : float = 1.0 / b.dot(b);
var kx : float = kk * a.dot(b);
var ky : float = kk * (2.0* a.dot(a) + d.dot(b)) / 3.0;
var kz : float = kk * d.dot(a);
var res : float = 0.0;
var sgn : float = 0.0;
var p : float = ky - kx * kx;
var p3 : float = p * p * p;
var q : float = kx * (2.0 * kx * kx - 3.0 * ky) + kz;
var h : float = q * q + 4.0 * p3;
var rvx : float = 0
if(h >= 0.0):
# // 1 root
h = sqrt(h);
var x : Vector2 = (Vector2(h,-h) - Vector2(q, q)) / 2.0
var uv : Vector2 = Commons.signv2(x) * Commons.powv2(Commons.absv2(x), Vector2(1.0/3.0, 1.0/3.0));
rvx = uv.x + uv.y - kx;
var t : float = clamp(rvx, 0.0, 1.0);
var q2 : Vector2 = d + (c + b * t) * t;
res = q2.dot(q2);
sgn = (c + Vector2(2, 2) * b * t).cross(q2)
else: # // 3 roots
var z : float = sqrt(-p);
var v : float = acos(q / (p * z * 2.0)) / 3.0;
var m : float = cos(v);
var n : float = sin(v) * 1.732050808;
var t : Vector3 = Commons.clampv3(Vector3(m+m, -n-m, n-m) * z - Vector3(kx, kx, kx), Vector3(), Vector3(1, 1, 1));
var qx : Vector2 = d + (c + b * t.x) * t.x;
var dx : float = qx.dot(qx)
var sx : float = (c + Vector2(2, 2) * b * t.x).cross(qx)
var qy : Vector2 = d + (c + b * t.y) * t.y
var dy : float = qy.dot(qy)
var sy : float = (c + Vector2(2, 2) * b * t.y).cross(qy)
if dx<dy:
res=dx
sgn=sx
rvx = t.x
else:
res=dy
sgn=sy
rvx = t.y
return Vector2(rvx, sqrt(res) * sign(sgn))
#vec2 circle_repeat_transform_2d(vec2 p, float count) {
# float r = 6.28/count;
# float pa = atan(p.x, p.y);
# float a = mod(pa+0.5*r, r)-0.5*r;
#
# vec2 rv;
#
# float c = cos(a-pa);
# float s = sin(a-pa);
#
# rv.x = p.x*c+p.y*s;
# rv.y = -p.x*s+p.y*c;
#
# return rv;
#}
static func circle_repeat_transform_2d(p : Vector2, count : float) -> Vector2:
var r : float = 6.28 / count
var pa : float = atan2(p.x, p.y)
var a : float = Commons.modf(pa + 0.5 * r, r)-0.5*r
var rv : Vector2 = Vector2()
var c : float = cos(a - pa);
var s : float = sin(a - pa);
rv.x = p.x * c + p.y * s
rv.y = -p.x * s + p.y * c
return rv;
#float sdNgon(vec2 p, float r, float n) {
# float PI = 3.1415926535;
# p = circle_repeat_transform_2d(p, n);
# vec2 d = abs(p)-vec2(r*tan(3.14159265359/n), r);
# return p.y < r ? p.y-r : length(max(d,vec2(0)))+min(max(d.x,d.y),0.0);
#}
static func sdNgon(pos : Vector2, r : float, n : float) -> Vector2:
return Vector2()
#vec2 repeat_2d(vec2 p, vec2 r, float seed, float randomness) {
# p -= vec2(0.5);
# float a = (rand(floor(mod((p.xy+0.5*r.xy)/r.xy, 1.0/r.xy)+vec2(seed)))-0.5)*6.28*randomness;
# p = mod(p+0.5*r,r)-0.5*r;
# vec2 rv;
# float c = cos(a);
# float s = sin(a);
# rv.x = p.x*c+p.y*s;
# rv.y = -p.x*s+p.y*c;
# return rv+vec2(0.5);
#}
static func repeat_2d(p : Vector2, r : Vector2, pseed : float, randomness : float) -> Vector2:
p -= Vector2(0.5, 0.5);
var v : Vector2 = Vector2(p.x, p.y) + Vector2(0.5, 0.5) + Vector2(r.x, r.y)
var a : float = ((Commons.rand2(Commons.floorv2(Commons.modv2(v / Vector2(r.x, r.y), Vector2(1.0, 1.0) / Vector2(r.x, r.y)) + Vector2(pseed, pseed))) - Vector2(0.5, 0.5)) * 6.28 * randomness).x
p = Commons.modv2(p + Vector2(0.5, 0.5) * r,r)- Vector2(0.5, 0.5) * r
var rv : Vector2 = Vector2()
var c : float = cos(a)
var s : float = sin(a)
rv.x = p.x * c + p.y * s
rv.y = -p.x * s + p.y * c
return rv + Vector2(0.5, 0.5);
#float sdSmoothUnion( float d1, float d2, float k ) {
# float h = clamp( 0.5 + 0.5*(d2-d1)/k, 0.0, 1.0 );
# return mix( d2, d1, h ) - k*h*(1.0-h);
#}
static func sdSmoothUnion(d1 : float, d2 : float, k : float) -> float:
return 0.0
#float sdSmoothSubtraction( float d1, float d2, float k ) {
# float h = clamp( 0.5 - 0.5*(d2+d1)/k, 0.0, 1.0 );
# return mix( d2, -d1, h ) + k*h*(1.0-h);
#}
static func sdSmoothSubtraction(d1 : float, d2 : float, k : float) -> float:
return 0.0
#float sdSmoothIntersection( float d1, float d2, float k ) {
# float h = clamp( 0.5 - 0.5*(d2-d1)/k, 0.0, 1.0 );
# return mix( d2, d1, h ) + k*h*(1.0-h);
#}
static func sdSmoothIntersection(d1 : float, d2 : float, k : float) -> float:
return 0.0
#float sdRipples(float d, float w, int r) {\n
# for (int i = 0; i < r; ++i) {
# d = abs(d)-w;
# }
#
# return d;
#}
static func sdRipples(d : float, w : float, r : int) -> float:
for i in range(r):
d = abs(d)-w;
return d
#$polygon = { p1(vec2), p2(vec2), p3(vec2) ... }
#float sdPolygon_$(name)(vec2 p) {
# vec2 v[] = $polygon;
# int l = v.length();
# float d = dot(p-v[0],p-v[0]);
# float s = 1.0;
# int j = l-1;
#
# for(int i=0; i<l; i++) {
# vec2 e = v[j] - v[i];
# vec2 w = p - v[i];
# vec2 b = w - e*clamp( dot(w,e)/dot(e,e), 0.0, 1.0 );
# d = min( d, dot(b,b) );
# bvec3 c = bvec3(p.y>=v[i].y,p.y<v[j].y,e.x*w.y>e.y*w.x);
#
# if(all(c) || all(not(c))) {
# s *= -1.0;
# }
#
# j = i;
# }
#
# return s*sqrt(d);
#}
static func sdPolygon(p : Vector2, v : PoolVector2Array) -> float:
var l : int = v.size()
var pmv0 : Vector2 = p - v[0]
var d : float = pmv0.dot(pmv0)
var s : float = 1.0
var j : int = l - 1
for i in range(l): #for(int i=0; i<l; i++)
var e : Vector2 = v[j] - v[i]
var w : Vector2 = p - v[i]
var b : Vector2 = w - e * clamp(w.dot(e) / e.dot(e), 0.0, 1.0)
d = min(d, b.dot(b))
var b1 : bool = p.y >= v[i].y
var b2 : bool = p.y < v[j].y
var b3 : bool = e.x * w.y > e.y * w.x
if((b1 && b2 && b3) || (!b1 && !b2 && !b3)):
s *= -1.0
j = i
return s * sqrt(d)