mirror of
https://github.com/Relintai/MLPP.git
synced 2024-11-14 10:17:18 +01:00
369 lines
16 KiB
C++
369 lines
16 KiB
C++
//
|
|
// main.cpp
|
|
// TEST_APP
|
|
//
|
|
// Created by Marc on 1/20/21.
|
|
//
|
|
|
|
// THINGS CURRENTLY TO DO:
|
|
// POLYMORPHIC IMPLEMENTATION OF REGRESSION CLASSES
|
|
// EXTEND SGD/MBGD SUPPORT FOR DYN. SIZED ANN
|
|
// STANDARDIZE ACTIVATIONS/OPTIMIZATIONS
|
|
// ADD LEAKYRELU, ELU, SELU TO ANN
|
|
|
|
// HYPOTHESIS TESTING CLASS
|
|
// GAUSS MARKOV CHECKER CLASS
|
|
|
|
#include <iostream>
|
|
#include <ctime>
|
|
#include <vector>
|
|
#include "MLPP/UniLinReg/UniLinReg.hpp"
|
|
#include "MLPP/LinReg/LinReg.hpp"
|
|
#include "MLPP/LogReg/LogReg.hpp"
|
|
#include "MLPP/CLogLogReg/CLogLogReg.hpp"
|
|
#include "MLPP/ExpReg/ExpReg.hpp"
|
|
#include "MLPP/ProbitReg/ProbitReg.hpp"
|
|
#include "MLPP/SoftmaxReg/SoftmaxReg.hpp"
|
|
#include "MLPP/TanhReg/TanhReg.hpp"
|
|
#include "MLPP/MLP/MLP.hpp"
|
|
#include "MLPP/SoftmaxNet/SoftmaxNet.hpp"
|
|
#include "MLPP/AutoEncoder/AutoEncoder.hpp"
|
|
#include "MLPP/ANN/ANN.hpp"
|
|
#include "MLPP/MultinomialNB/MultinomialNB.hpp"
|
|
#include "MLPP/BernoulliNB/BernoulliNB.hpp"
|
|
#include "MLPP/GaussianNB/GaussianNB.hpp"
|
|
#include "MLPP/KMeans/KMeans.hpp"
|
|
#include "MLPP/kNN/kNN.hpp"
|
|
#include "MLPP/PCA/PCA.hpp"
|
|
#include "MLPP/OutlierFinder/OutlierFinder.hpp"
|
|
#include "MLPP/Stat/Stat.hpp"
|
|
#include "MLPP/LinAlg/LinAlg.hpp"
|
|
#include "MLPP/Activation/Activation.hpp"
|
|
#include "MLPP/Data/Data.hpp"
|
|
#include "MLPP/Convolutions/Convolutions.hpp"
|
|
|
|
|
|
using namespace MLPP;
|
|
|
|
int main() {
|
|
|
|
// OBJECTS
|
|
Stat stat;
|
|
LinAlg alg;
|
|
Activation avn;
|
|
Data data;
|
|
Convolutions conv;
|
|
|
|
// DATA SETS
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// std::vector<double> outputSet = {2,4,6,8,10,12,14,16,18,20};
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
|
// std::vector<double> outputSet = {1,1,0,-1,-1};
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{0,1,2,3,4}};
|
|
// std::vector<double> outputSet = {1,2,4,8,16};
|
|
|
|
//std::vector<std::vector<double>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{1,1,0,0,1}, {0,0,1,1,1}, {0,1,1,0,1}};
|
|
// std::vector<double> outputSet = {0,1,0,1,1};
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// std::vector<double> outputSet = {0,1,1,0};
|
|
|
|
// // STATISTICS
|
|
// std::vector<double> x = {1,2,3,4,5,6,7,8,9,1};
|
|
// std::vector<double> y = {10,9,8,7,6,5,4,3,2,1};
|
|
// std::vector<double> w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};
|
|
|
|
// std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl;
|
|
// std::cout << "Median: " << stat.median(x) << std::endl;
|
|
// alg.printVector(stat.mode(x));
|
|
// std::cout << "Variance: " << stat.variance(x) << std::endl;
|
|
// std::cout << "Covariance: " << stat.covariance(x, y) << std::endl;
|
|
// std::cout << "Correlation: " << stat.correlation(x, y) << std::endl;
|
|
// std::cout << "R^2: " << stat.R2(x, y) << std::endl;
|
|
// std::cout << "Weighted Mean: " << stat.weightedMean(x, w) << std::endl;
|
|
// std::cout << "Geometric Mean: " << stat.geometricMean(x) << std::endl;
|
|
// std::cout << "Harmonic Mean: " << stat.harmonicMean(x) << std::endl;
|
|
// std::cout << "Root Mean Square (Quadratic mean): " << stat.RMS(x) << std::endl;
|
|
// std::cout << "Power Mean (p = 5): " << stat.powerMean(x, 5) << std::endl;
|
|
// std::cout << "Lehmer Mean (p = 5): " << stat.lehmerMean(x, 5) << std::endl;
|
|
// std::cout << "Weighted Lehmer Mean (p = 5): " << stat.weightedLehmerMean(x, w, 5) << std::endl;
|
|
// std::cout << "Contraharmonic Mean: " << stat.contraharmonicMean(x) << std::endl;
|
|
// std::cout << "Hernonian Mean: " << stat.heronianMean(1, 10) << std::endl;
|
|
// std::cout << "Heinz Mean (x = 1): " << stat.heinzMean(1, 10, 1) << std::endl;
|
|
// std::cout << "Neuman-Sandor Mean: " << stat.neumanSandorMean(1, 10) << std::endl;
|
|
// std::cout << "Stolarsky Mean (p = 5): " << stat.stolarskyMean(1, 10, 5) << std::endl;
|
|
// std::cout << "Identric Mean: " << stat.identricMean(1, 10) << std::endl;
|
|
// std::cout << "Logarithmic Mean: " << stat.logMean(1, 10) << std::endl;
|
|
// std::cout << "Standard Deviation: " << stat.standardDeviation(x) << std::endl;
|
|
// std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl;
|
|
// // Returns 1 - (1/k^2)
|
|
// std::cout << "Chebyshev Inequality: " << stat.chebyshevIneq(2) << std::endl;
|
|
|
|
// // LINEAR ALGEBRA
|
|
// std::vector<std::vector<double>> A = {
|
|
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
// };
|
|
// std::vector<double> a = {4, 3, 1, 3};
|
|
// std::vector<double> b = {3, 5, 6, 1};
|
|
|
|
// alg.printMatrix(alg.matmult(alg.transpose(A), A));
|
|
// std::cout << std::endl;
|
|
// std::cout << alg.dot(a, b) << std::endl;
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(alg.hadamard_product(A, A));
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(alg.identity(10));
|
|
|
|
// // UNIVARIATE LINEAR REGRESSION
|
|
// // Univariate, simple linear regression case where k = 1
|
|
// std::vector<double> inputSet;
|
|
// std::vector<double> outputSet;
|
|
// // Analytical solution used for calculating the parameters.
|
|
// data.setData("/Users/marcmelikyan/Desktop/Data/FiresAndCrime.csv", inputSet, outputSet);
|
|
// UniLinReg model(inputSet, outputSet);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
|
|
// MULIVARIATE LINEAR REGRESSION
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// std::vector<double> outputSet = {2,4,6,8,10,12,14,16,18,20};
|
|
// LinReg model(alg.transpose(inputSet), outputSet); // Can use Lasso, Ridge, ElasticNet Reg
|
|
//model.normalEquation();
|
|
// model.gradientDescent(0.001, 30000, 1);
|
|
// model.SGD(0.001, 30000, 1);
|
|
// model.MBGD(0.001, 10000, 2, 1);
|
|
// alg.printVector(model.modelSetTest((alg.transpose(inputSet))));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // LOGISTIC REGRESSION
|
|
// std::vector<std::vector<double>> inputSet;
|
|
// std::vector<double> outputSet;
|
|
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet);
|
|
// LogReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 100000, 0);
|
|
// model.MLE(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // PROBIT REGRESSION
|
|
// std::vector<std::vector<double>> inputSet;
|
|
// std::vector<double> outputSet;
|
|
// data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet);
|
|
// ProbitReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 10000, 1);
|
|
// alg.printVector(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // CLOGLOG REGRESSION
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
|
// CLogLogReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // EXPREG REGRESSION
|
|
// std::vector<std::vector<double>> inputSet = {{0,1,2,3,4}};
|
|
// std::vector<double> outputSet = {1,2,4,8,16};
|
|
// ExpReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.001, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // TANH REGRESSION
|
|
// std::vector<std::vector<double>> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}};
|
|
// std::vector<double> outputSet = {1,1,0,-1,-1};
|
|
// TanhReg model(alg.transpose(inputSet), outputSet);
|
|
// model.SGD(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // SOFTMAX REGRESSION
|
|
// std::vector<std::vector<double>> inputSet;
|
|
// std::vector<double> tempOutputSet;
|
|
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet);
|
|
// std::vector<std::vector<double>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
|
|
|
// SoftmaxReg model(inputSet, outputSet);
|
|
// model.SGD(0.001, 20000, 0);
|
|
// alg.printMatrix(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // MLP
|
|
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// std::vector<double> outputSet = {0,1,1,0};
|
|
// MLP model(alg.transpose(inputSet), outputSet, 2);
|
|
// model.gradientDescent(0.1, 10000, 0);
|
|
// alg.printVector(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // SOFTMAX NETWORK
|
|
// std::vector<std::vector<double>> inputSet;
|
|
// std::vector<double> tempOutputSet;
|
|
// data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet);
|
|
// std::vector<std::vector<double>> outputSet = data.oneHotRep(tempOutputSet, 3);
|
|
|
|
// SoftmaxNet model(inputSet, outputSet, 2);
|
|
// model.gradientDescent(0.001, 10000, 0);
|
|
// alg.printMatrix(model.modelSetTest(inputSet));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // AUTOENCODER
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
|
// AutoEncoder model(alg.transpose(inputSet), 5);
|
|
// model.SGD(0.001, 300000, 0);
|
|
// alg.printMatrix(model.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl;
|
|
|
|
// // DYNAMICALLY SIZED ANN
|
|
// // Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
|
// // Possible Activations: Linear, Sigmoid, Swish, Softplus, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
|
// // Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss
|
|
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
|
// std::vector<double> outputSet = {0,1,1,0};
|
|
// ANN ann(alg.transpose(inputSet), outputSet);
|
|
// ann.addLayer(10, "RELU", "Default", "Ridge", 0.0001);
|
|
// ann.addLayer(10, "Sigmoid", "Default");
|
|
// ann.addOutputLayer("Sigmoid", "LogLoss", "XavierNormal");
|
|
// ann.gradientDescent(0.1, 80000, 0);
|
|
// alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
|
|
|
// // NAIVE BAYES
|
|
// std::vector<std::vector<double>> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}};
|
|
// std::vector<double> outputSet = {0,1,0,1,1};
|
|
|
|
// MultinomialNB MNB(alg.transpose(inputSet), outputSet, 2);
|
|
// alg.printVector(MNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// BernoulliNB BNB(alg.transpose(inputSet), outputSet);
|
|
// alg.printVector(BNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// GaussianNB GNB(alg.transpose(inputSet), outputSet, 2);
|
|
// alg.printVector(GNB.modelSetTest(alg.transpose(inputSet)));
|
|
|
|
// // KMeans
|
|
// std::vector<std::vector<double>> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}};
|
|
// KMeans kmeans(inputSet, 3, "KMeans++");
|
|
// kmeans.train(3, 1);
|
|
// std::cout << std::endl;
|
|
// alg.printMatrix(kmeans.modelSetTest(inputSet)); // Returns the assigned centroids to each of the respective training examples
|
|
// std::cout << std::endl;
|
|
// alg.printVector(kmeans.silhouette_scores());
|
|
|
|
// // kNN
|
|
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}};
|
|
// std::vector<double> outputSet = {0,0,0,0,1,1,1,1};
|
|
// kNN knn(alg.transpose(inputSet), outputSet, 8);
|
|
// alg.printVector(knn.modelSetTest(alg.transpose(inputSet)));
|
|
// std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl;
|
|
|
|
|
|
// //CONVOLUTION, POOLING, ETC..
|
|
// std::vector<std::vector<double>> input = {
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0},
|
|
// {1,1,1,1,0,0,0,0}
|
|
// };
|
|
|
|
// alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding
|
|
// alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling.
|
|
|
|
// std::vector<std::vector<std::vector<double>>> tensorSet;
|
|
// tensorSet.push_back(input);
|
|
// tensorSet.push_back(input);
|
|
// alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling.
|
|
|
|
// // PCA, SVD, eigenvalues & eigenvectors
|
|
// std::vector<std::vector<double>> inputSet = {{1,1}, {1,1}};
|
|
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
|
// std::cout << "Eigenvectors:" << std::endl;
|
|
// alg.printMatrix(Eigenvectors);
|
|
// std::cout << std::endl;
|
|
// std::cout << "Eigenvalues:" << std::endl;
|
|
// alg.printMatrix(Eigenvalues);
|
|
|
|
// auto [U, S, Vt] = alg.SVD(inputSet);
|
|
|
|
// // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors.
|
|
// PCA dr(inputSet, 1); // 1 dimensional representation.
|
|
// std::cout << std::endl;
|
|
// std::cout << "Dimensionally reduced representation:" << std::endl;
|
|
// alg.printMatrix(dr.principalComponents());
|
|
// std::cout << "SCORE: " << dr.score() << std::endl;
|
|
|
|
|
|
// // NLP/DATA
|
|
// std::string verbText = "I am appearing and thinking, as well as conducting.";
|
|
// std::cout << "Stemming Example:" << std::endl;
|
|
// std::cout << data.stemming(verbText) << std::endl;
|
|
// std::cout << std::endl;
|
|
|
|
// std::vector<std::string> sentences = {"He is a good boy", "She is a good girl", "The boy and girl are good"};
|
|
// std::cout << "Bag of Words Example:" << std::endl;
|
|
// alg.printMatrix(data.BOW(sentences, "Default"));
|
|
// std::cout << std::endl;
|
|
// std::cout << "TFIDF Example:" << std::endl;
|
|
// alg.printMatrix(data.TFIDF(sentences));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Tokenization:" << std::endl;
|
|
// alg.printVector(data.tokenize(verbText));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Word2Vec:" << std::endl;
|
|
// std::string textArchive = {"He is a good boy. She is a good girl. The boy and girl are good."};
|
|
// std::vector<std::string> corpus = data.splitSentences(textArchive);
|
|
// auto [wordEmbeddings, wordList] = data.word2Vec(corpus, "CBOW", 2, 2, 0.1, 10000); // Can use either CBOW or Skip-n-gram.
|
|
// alg.printMatrix(wordEmbeddings);
|
|
// std::cout << std::endl;
|
|
|
|
// std::vector<std::vector<double>> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}};
|
|
// std::cout << "Feature Scaling Example:" << std::endl;
|
|
// alg.printMatrix(data.featureScaling(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Mean Centering Example:" << std::endl;
|
|
// alg.printMatrix(data.meanCentering(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// std::cout << "Mean Normalization Example:" << std::endl;
|
|
// alg.printMatrix(data.meanNormalization(inputSet));
|
|
// std::cout << std::endl;
|
|
|
|
// // Outlier Finder
|
|
// std::vector<double> inputSet = {1,2,3,4,5,6,7,8,9,23554332523523};
|
|
// OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier.
|
|
// alg.printVector(outlierFinder.modelTest(inputSet));
|
|
|
|
// // Testing new Functions
|
|
// double z_s = 0.001;
|
|
// std::cout << avn.arcoth(z_s) << std::endl;
|
|
// std::cout << avn.arcoth(z_s, 1) << std::endl;
|
|
|
|
// std::vector<double> z_v = {0.001, 5};
|
|
// alg.printVector(avn.arcoth(z_v));
|
|
// alg.printVector(avn.arcoth(z_v, 1));
|
|
|
|
// std::vector<std::vector<double>> Z_m = {{0.001, 5}};
|
|
// alg.printMatrix(avn.arcoth(Z_m));
|
|
// alg.printMatrix(avn.arcoth(Z_m, 1));
|
|
|
|
// std::cout << alg.trace({{1,2}, {3,4}}) << std::endl;
|
|
// alg.printMatrix(alg.pinverse({{1,2}, {3,4}}));
|
|
// alg.printMatrix(alg.diag({1,2,3,4,5}));
|
|
|
|
return 0;
|
|
} |