// // main.cpp // TEST_APP // // Created by Marc on 1/20/21. // // THINGS CURRENTLY TO DO: // POLYMORPHIC IMPLEMENTATION OF REGRESSION CLASSES // EXTEND SGD/MBGD SUPPORT FOR DYN. SIZED ANN // STANDARDIZE ACTIVATIONS/OPTIMIZATIONS // ADD LEAKYRELU, ELU, SELU TO ANN // HYPOTHESIS TESTING CLASS // GAUSS MARKOV CHECKER CLASS #include #include #include #include "MLPP/UniLinReg/UniLinReg.hpp" #include "MLPP/LinReg/LinReg.hpp" #include "MLPP/LogReg/LogReg.hpp" #include "MLPP/CLogLogReg/CLogLogReg.hpp" #include "MLPP/ExpReg/ExpReg.hpp" #include "MLPP/ProbitReg/ProbitReg.hpp" #include "MLPP/SoftmaxReg/SoftmaxReg.hpp" #include "MLPP/TanhReg/TanhReg.hpp" #include "MLPP/MLP/MLP.hpp" #include "MLPP/SoftmaxNet/SoftmaxNet.hpp" #include "MLPP/AutoEncoder/AutoEncoder.hpp" #include "MLPP/ANN/ANN.hpp" #include "MLPP/MultinomialNB/MultinomialNB.hpp" #include "MLPP/BernoulliNB/BernoulliNB.hpp" #include "MLPP/GaussianNB/GaussianNB.hpp" #include "MLPP/KMeans/KMeans.hpp" #include "MLPP/kNN/kNN.hpp" #include "MLPP/PCA/PCA.hpp" #include "MLPP/OutlierFinder/OutlierFinder.hpp" #include "MLPP/Stat/Stat.hpp" #include "MLPP/LinAlg/LinAlg.hpp" #include "MLPP/Activation/Activation.hpp" #include "MLPP/Data/Data.hpp" #include "MLPP/Convolutions/Convolutions.hpp" using namespace MLPP; int main() { // OBJECTS Stat stat; LinAlg alg; Activation avn; Data data; Convolutions conv; // DATA SETS // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; // std::vector outputSet = {2,4,6,8,10,12,14,16,18,20}; // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; // std::vector outputSet = {0,0,0,0,1,1,1,1}; // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; // std::vector outputSet = {1,1,0,-1,-1}; // std::vector> inputSet = {{0,1,2,3,4}}; // std::vector outputSet = {1,2,4,8,16}; //std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; // std::vector> inputSet = {{1,1,0,0,1}, {0,0,1,1,1}, {0,1,1,0,1}}; // std::vector outputSet = {0,1,0,1,1}; // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; // std::vector outputSet = {0,1,1,0}; // // STATISTICS // std::vector x = {1,2,3,4,5,6,7,8,9,1}; // std::vector y = {10,9,8,7,6,5,4,3,2,1}; // std::vector w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}; // std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl; // std::cout << "Median: " << stat.median(x) << std::endl; // alg.printVector(stat.mode(x)); // std::cout << "Variance: " << stat.variance(x) << std::endl; // std::cout << "Covariance: " << stat.covariance(x, y) << std::endl; // std::cout << "Correlation: " << stat.correlation(x, y) << std::endl; // std::cout << "R^2: " << stat.R2(x, y) << std::endl; // std::cout << "Weighted Mean: " << stat.weightedMean(x, w) << std::endl; // std::cout << "Geometric Mean: " << stat.geometricMean(x) << std::endl; // std::cout << "Harmonic Mean: " << stat.harmonicMean(x) << std::endl; // std::cout << "Root Mean Square (Quadratic mean): " << stat.RMS(x) << std::endl; // std::cout << "Power Mean (p = 5): " << stat.powerMean(x, 5) << std::endl; // std::cout << "Lehmer Mean (p = 5): " << stat.lehmerMean(x, 5) << std::endl; // std::cout << "Weighted Lehmer Mean (p = 5): " << stat.weightedLehmerMean(x, w, 5) << std::endl; // std::cout << "Contraharmonic Mean: " << stat.contraharmonicMean(x) << std::endl; // std::cout << "Hernonian Mean: " << stat.heronianMean(1, 10) << std::endl; // std::cout << "Heinz Mean (x = 1): " << stat.heinzMean(1, 10, 1) << std::endl; // std::cout << "Neuman-Sandor Mean: " << stat.neumanSandorMean(1, 10) << std::endl; // std::cout << "Stolarsky Mean (p = 5): " << stat.stolarskyMean(1, 10, 5) << std::endl; // std::cout << "Identric Mean: " << stat.identricMean(1, 10) << std::endl; // std::cout << "Logarithmic Mean: " << stat.logMean(1, 10) << std::endl; // std::cout << "Standard Deviation: " << stat.standardDeviation(x) << std::endl; // std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl; // // Returns 1 - (1/k^2) // std::cout << "Chebyshev Inequality: " << stat.chebyshevIneq(2) << std::endl; // // LINEAR ALGEBRA // std::vector> A = { // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, // {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, // }; // std::vector a = {4, 3, 1, 3}; // std::vector b = {3, 5, 6, 1}; // alg.printMatrix(alg.matmult(alg.transpose(A), A)); // std::cout << std::endl; // std::cout << alg.dot(a, b) << std::endl; // std::cout << std::endl; // alg.printMatrix(alg.hadamard_product(A, A)); // std::cout << std::endl; // alg.printMatrix(alg.identity(10)); // // UNIVARIATE LINEAR REGRESSION // // Univariate, simple linear regression case where k = 1 // std::vector inputSet; // std::vector outputSet; // // Analytical solution used for calculating the parameters. // data.setData("/Users/marcmelikyan/Desktop/Data/FiresAndCrime.csv", inputSet, outputSet); // UniLinReg model(inputSet, outputSet); // alg.printVector(model.modelSetTest(inputSet)); // MULIVARIATE LINEAR REGRESSION // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; // std::vector outputSet = {2,4,6,8,10,12,14,16,18,20}; // LinReg model(alg.transpose(inputSet), outputSet); // Can use Lasso, Ridge, ElasticNet Reg //model.normalEquation(); // model.gradientDescent(0.001, 30000, 1); // model.SGD(0.001, 30000, 1); // model.MBGD(0.001, 10000, 2, 1); // alg.printVector(model.modelSetTest((alg.transpose(inputSet)))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // LOGISTIC REGRESSION // std::vector> inputSet; // std::vector outputSet; // data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet); // LogReg model(inputSet, outputSet); // model.SGD(0.001, 100000, 0); // model.MLE(0.1, 10000, 0); // alg.printVector(model.modelSetTest(inputSet)); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // PROBIT REGRESSION // std::vector> inputSet; // std::vector outputSet; // data.setData(30, "/Users/marcmelikyan/Desktop/Data/BreastCancer.csv", inputSet, outputSet); // ProbitReg model(inputSet, outputSet); // model.SGD(0.001, 10000, 1); // alg.printVector(model.modelSetTest(inputSet)); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // CLOGLOG REGRESSION // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; // std::vector outputSet = {0,0,0,0,1,1,1,1}; // CLogLogReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.1, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // EXPREG REGRESSION // std::vector> inputSet = {{0,1,2,3,4}}; // std::vector outputSet = {1,2,4,8,16}; // ExpReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.001, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // TANH REGRESSION // std::vector> inputSet = {{4,3,0,-3,-4}, {0,0,0,1,1}}; // std::vector outputSet = {1,1,0,-1,-1}; // TanhReg model(alg.transpose(inputSet), outputSet); // model.SGD(0.1, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // SOFTMAX REGRESSION // std::vector> inputSet; // std::vector tempOutputSet; // data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); // std::vector> outputSet = data.oneHotRep(tempOutputSet, 3); // SoftmaxReg model(inputSet, outputSet); // model.SGD(0.001, 20000, 0); // alg.printMatrix(model.modelSetTest(inputSet)); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // MLP // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; // std::vector outputSet = {0,1,1,0}; // MLP model(alg.transpose(inputSet), outputSet, 2); // model.gradientDescent(0.1, 10000, 0); // alg.printVector(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // SOFTMAX NETWORK // std::vector> inputSet; // std::vector tempOutputSet; // data.setData(4, "/Users/marcmelikyan/Desktop/Data/Iris.csv", inputSet, tempOutputSet); // std::vector> outputSet = data.oneHotRep(tempOutputSet, 3); // SoftmaxNet model(inputSet, outputSet, 2); // model.gradientDescent(0.001, 10000, 0); // alg.printMatrix(model.modelSetTest(inputSet)); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // AUTOENCODER // std::vector> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}}; // AutoEncoder model(alg.transpose(inputSet), 5); // model.SGD(0.001, 300000, 0); // alg.printMatrix(model.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * model.score() << "%" << std::endl; // // DYNAMICALLY SIZED ANN // // Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform // // Possible Activations: Linear, Sigmoid, Swish, Softplus, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep // // Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss // std::vector> inputSet = {{0,0,1,1}, {0,1,0,1}}; // std::vector outputSet = {0,1,1,0}; // ANN ann(alg.transpose(inputSet), outputSet); // ann.addLayer(10, "RELU", "Default", "Ridge", 0.0001); // ann.addLayer(10, "Sigmoid", "Default"); // ann.addOutputLayer("Sigmoid", "LogLoss", "XavierNormal"); // ann.gradientDescent(0.1, 80000, 0); // alg.printVector(ann.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // // NAIVE BAYES // std::vector> inputSet = {{1,1,1,1,1}, {0,0,1,1,1}, {0,0,1,0,1}}; // std::vector outputSet = {0,1,0,1,1}; // MultinomialNB MNB(alg.transpose(inputSet), outputSet, 2); // alg.printVector(MNB.modelSetTest(alg.transpose(inputSet))); // BernoulliNB BNB(alg.transpose(inputSet), outputSet); // alg.printVector(BNB.modelSetTest(alg.transpose(inputSet))); // GaussianNB GNB(alg.transpose(inputSet), outputSet, 2); // alg.printVector(GNB.modelSetTest(alg.transpose(inputSet))); // // KMeans // std::vector> inputSet = {{32, 0, 7}, {2, 28, 17}, {0, 9, 23}}; // KMeans kmeans(inputSet, 3, "KMeans++"); // kmeans.train(3, 1); // std::cout << std::endl; // alg.printMatrix(kmeans.modelSetTest(inputSet)); // Returns the assigned centroids to each of the respective training examples // std::cout << std::endl; // alg.printVector(kmeans.silhouette_scores()); // // kNN // std::vector> inputSet = {{1,2,3,4,5,6,7,8}, {0,0,0,0,1,1,1,1}}; // std::vector outputSet = {0,0,0,0,1,1,1,1}; // kNN knn(alg.transpose(inputSet), outputSet, 8); // alg.printVector(knn.modelSetTest(alg.transpose(inputSet))); // std::cout << "ACCURACY: " << 100 * knn.score() << "%" << std::endl; // //CONVOLUTION, POOLING, ETC.. // std::vector> input = { // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0}, // {1,1,1,1,0,0,0,0} // }; // alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding // alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling. // std::vector>> tensorSet; // tensorSet.push_back(input); // tensorSet.push_back(input); // alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling. // // PCA, SVD, eigenvalues & eigenvectors // std::vector> inputSet = {{1,1}, {1,1}}; // auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet); // std::cout << "Eigenvectors:" << std::endl; // alg.printMatrix(Eigenvectors); // std::cout << std::endl; // std::cout << "Eigenvalues:" << std::endl; // alg.printMatrix(Eigenvalues); // auto [U, S, Vt] = alg.SVD(inputSet); // // PCA done using Jacobi's method to approximate eigenvalues and eigenvectors. // PCA dr(inputSet, 1); // 1 dimensional representation. // std::cout << std::endl; // std::cout << "Dimensionally reduced representation:" << std::endl; // alg.printMatrix(dr.principalComponents()); // std::cout << "SCORE: " << dr.score() << std::endl; // // NLP/DATA // std::string verbText = "I am appearing and thinking, as well as conducting."; // std::cout << "Stemming Example:" << std::endl; // std::cout << data.stemming(verbText) << std::endl; // std::cout << std::endl; // std::vector sentences = {"He is a good boy", "She is a good girl", "The boy and girl are good"}; // std::cout << "Bag of Words Example:" << std::endl; // alg.printMatrix(data.BOW(sentences, "Default")); // std::cout << std::endl; // std::cout << "TFIDF Example:" << std::endl; // alg.printMatrix(data.TFIDF(sentences)); // std::cout << std::endl; // std::cout << "Tokenization:" << std::endl; // alg.printVector(data.tokenize(verbText)); // std::cout << std::endl; // std::cout << "Word2Vec:" << std::endl; // std::string textArchive = {"He is a good boy. She is a good girl. The boy and girl are good."}; // std::vector corpus = data.splitSentences(textArchive); // auto [wordEmbeddings, wordList] = data.word2Vec(corpus, "CBOW", 2, 2, 0.1, 10000); // Can use either CBOW or Skip-n-gram. // alg.printMatrix(wordEmbeddings); // std::cout << std::endl; // std::vector> inputSet = {{1,2},{2,3},{3,4},{4,5},{5,6}}; // std::cout << "Feature Scaling Example:" << std::endl; // alg.printMatrix(data.featureScaling(inputSet)); // std::cout << std::endl; // std::cout << "Mean Centering Example:" << std::endl; // alg.printMatrix(data.meanCentering(inputSet)); // std::cout << std::endl; // std::cout << "Mean Normalization Example:" << std::endl; // alg.printMatrix(data.meanNormalization(inputSet)); // std::cout << std::endl; // // Outlier Finder // std::vector inputSet = {1,2,3,4,5,6,7,8,9,23554332523523}; // OutlierFinder outlierFinder(2); // Any datapoint outside of 2 stds from the mean is marked as an outlier. // alg.printVector(outlierFinder.modelTest(inputSet)); // // Testing new Functions // double z_s = 0.001; // std::cout << avn.arcoth(z_s) << std::endl; // std::cout << avn.arcoth(z_s, 1) << std::endl; // std::vector z_v = {0.001, 5}; // alg.printVector(avn.arcoth(z_v)); // alg.printVector(avn.arcoth(z_v, 1)); // std::vector> Z_m = {{0.001, 5}}; // alg.printMatrix(avn.arcoth(Z_m)); // alg.printMatrix(avn.arcoth(Z_m, 1)); // std::cout << alg.trace({{1,2}, {3,4}}) << std::endl; // alg.printMatrix(alg.pinverse({{1,2}, {3,4}})); return 0; }