mirror of
https://github.com/Relintai/MLPP.git
synced 2024-11-14 10:17:18 +01:00
3d rotation matrices.
This commit is contained in:
parent
30737542ed
commit
d60cae6189
@ -897,6 +897,15 @@ namespace MLPP{
|
||||
return b;
|
||||
}
|
||||
|
||||
std::vector<std::vector<double>> LinAlg::rotate(std::vector<std::vector<double>> A, double theta, int axis){
|
||||
std::vector<std::vector<double>> rotationMatrix = {{std::cos(theta), -std::sin(theta)}, {std::sin(theta), std::cos(theta)}};
|
||||
if(axis == 0) {rotationMatrix = {{1, 0, 0}, {0, std::cos(theta), -std::sin(theta)}, {0, std::sin(theta), std::cos(theta)}};}
|
||||
else if(axis == 1) {rotationMatrix = {{std::cos(theta), 0, std::sin(theta)}, {0, 1, 0}, {-std::sin(theta), 0, std::cos(theta)}};}
|
||||
else if (axis == 2) {rotationMatrix = {{std::cos(theta), -std::sin(theta), 0}, {std::sin(theta), std::cos(theta), 0}, {1, 0, 0}};}
|
||||
|
||||
return matmult(A, rotationMatrix);
|
||||
}
|
||||
|
||||
double LinAlg::max(std::vector<double> a){
|
||||
int max = a[0];
|
||||
for(int i = 0; i < a.size(); i++){
|
||||
|
@ -74,6 +74,8 @@ namespace MLPP{
|
||||
|
||||
std::vector<std::vector<double>> cos(std::vector<std::vector<double>> A);
|
||||
|
||||
std::vector<std::vector<double>> rotate(std::vector<std::vector<double>> A, double theta, int axis = -1);
|
||||
|
||||
double max(std::vector<std::vector<double>> A);
|
||||
|
||||
double min(std::vector<std::vector<double>> A);
|
||||
|
14
main.cpp
14
main.cpp
@ -100,7 +100,7 @@ int main() {
|
||||
// Activation avn;
|
||||
// Cost cost;
|
||||
// Data data;
|
||||
// Convolutions conv;
|
||||
Convolutions conv;
|
||||
|
||||
// DATA SETS
|
||||
// std::vector<std::vector<double>> inputSet = {{1,2,3,4,5,6,7,8,9,10}, {3,5,9,12,15,18,21,24,27,30}};
|
||||
@ -157,7 +157,11 @@ int main() {
|
||||
// std::cout << "Logarithmic Mean: " << stat.logMean(1, 10) << std::endl;
|
||||
// std::cout << "Absolute Average Deviation: " << stat.absAvgDeviation(x) << std::endl;
|
||||
|
||||
// // LINEAR ALGEBRA
|
||||
// LINEAR ALGEBRA
|
||||
std::vector<std::vector<double>> square = {{1, 1}, {-1, 1}, {1, -1}, {-1, -1}};
|
||||
|
||||
alg.printMatrix(alg.rotate(square, M_PI/4));
|
||||
|
||||
// std::vector<std::vector<double>> A = {
|
||||
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||
// {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||
@ -405,6 +409,10 @@ int main() {
|
||||
// tensorSet.push_back(input);
|
||||
// alg.printVector(conv.globalPool(tensorSet, "Average")); // Can use Max, Min, or Average global pooling.
|
||||
|
||||
// std::vector<std::vector<double>> laplacian = {{1, 1, 1}, {1, -4, 1}, {1, 1, 1}};
|
||||
// alg.printMatrix(conv.convolve(conv.gaussianFilter2D(5, 1), laplacian, 1));
|
||||
|
||||
|
||||
// // PCA, SVD, eigenvalues & eigenvectors
|
||||
// std::vector<std::vector<double>> inputSet = {{1,1}, {1,1}};
|
||||
// auto [Eigenvectors, Eigenvalues] = alg.eig(inputSet);
|
||||
@ -543,7 +551,7 @@ int main() {
|
||||
// std::cout << "Our Hessian." << std::endl;
|
||||
// alg.printMatrix(numAn.hessian(&f_mv, {2, 2, 500}));
|
||||
|
||||
std::cout << numAn.laplacian(f_mv, {1,1,1}) << std::endl;
|
||||
// std::cout << numAn.laplacian(f_mv, {1,1,1}) << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user