mirror of
https://github.com/Relintai/MLPP.git
synced 2025-02-10 16:10:06 +01:00
Merge branch 'main' of https://github.com/novak-99/MLPP into main
This commit is contained in:
commit
9489ff258b
71
README.md
71
README.md
@ -3,6 +3,75 @@
|
|||||||
Machine learning is a vast and exiciting discipline, garnering attention from specialists of many fields. Unfortunately, for C++ programmers and enthusiasts, there appears to be a lack of support for this magnificient language in the field of machine learning. As a consequence, this library was created in order to fill that void and give C++ a true foothold in the ML sphere to act as a crossroad between low level developers and machine learning engineers.
|
Machine learning is a vast and exiciting discipline, garnering attention from specialists of many fields. Unfortunately, for C++ programmers and enthusiasts, there appears to be a lack of support for this magnificient language in the field of machine learning. As a consequence, this library was created in order to fill that void and give C++ a true foothold in the ML sphere to act as a crossroad between low level developers and machine learning engineers.
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://raw.githubusercontent.com/novak-99/MLPP/main/cover_gif.gif"
|
<img src="https://user-images.githubusercontent.com/78002988/119920911-f3338d00-bf21-11eb-89b3-c84bf7c9f4ac.gif"
|
||||||
width = 600 height = 400>
|
width = 600 height = 400>
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
## Contents of the Library
|
||||||
|
1. ***Regression***
|
||||||
|
1. Linear Regression
|
||||||
|
2. Logistic Regression
|
||||||
|
3. Softmax Regression
|
||||||
|
4. Exponential Regression
|
||||||
|
5. Probit Regression
|
||||||
|
6. CLogLog Regression
|
||||||
|
2. ***Deep, Dynamically Sized Neural Networks***
|
||||||
|
1. Possible Activation Functions
|
||||||
|
- Linear
|
||||||
|
- Sigmoid
|
||||||
|
- Swish
|
||||||
|
- Softplus
|
||||||
|
- CLogLog
|
||||||
|
- Gaussian CDF
|
||||||
|
- GELU
|
||||||
|
- Unit Step
|
||||||
|
- Sinh
|
||||||
|
- Cosh
|
||||||
|
- Tanh
|
||||||
|
- Csch
|
||||||
|
- Sech
|
||||||
|
- Coth
|
||||||
|
- Arsinh
|
||||||
|
- Arcosh
|
||||||
|
- Artanh
|
||||||
|
- Arcsch
|
||||||
|
- Arsech
|
||||||
|
- Arcoth
|
||||||
|
2. Possible Loss Functions
|
||||||
|
- MSE
|
||||||
|
- RMSE
|
||||||
|
- MAE
|
||||||
|
- MBE
|
||||||
|
- Log Loss
|
||||||
|
- Cross Entropy
|
||||||
|
- Hinge Loss
|
||||||
|
3. Possible Regularization Methods
|
||||||
|
- Lasso
|
||||||
|
- Ridge
|
||||||
|
- ElasticNet
|
||||||
|
4. Possible Weight Initialization Methods
|
||||||
|
- Uniform
|
||||||
|
- Xavier Normal
|
||||||
|
- Xavier Uniform
|
||||||
|
- He Normal
|
||||||
|
- He Uniform
|
||||||
|
3. ***Prebuilt Neural Networks***
|
||||||
|
1. Multilayer Peceptron
|
||||||
|
2. Autoencoder
|
||||||
|
3. Softmax Network
|
||||||
|
4. ***Natural Language Processing***
|
||||||
|
1. Word2Vec (Continous Bag of Words, Skip-N Gram)
|
||||||
|
2. Stemming
|
||||||
|
3. Bag of Words
|
||||||
|
4. TFIDF
|
||||||
|
5. Tokenization
|
||||||
|
6. Auxiliary Text Processing Functions
|
||||||
|
5. ***Computer Vision***
|
||||||
|
1. The Convolution Operation
|
||||||
|
2. Max, Min, Average Pooling
|
||||||
|
3. Global Max, Min, Average Pooling
|
||||||
|
4. Prebuilt Feature Detectors
|
||||||
|
- Horizontal/Vertical Prewitt Filter
|
||||||
|
- Horizontal/Vertical Sobel Filter
|
||||||
|
- Horizontal/Vertical Scharr Filter
|
||||||
|
- Horizontal/Vertical Roberts Filter
|
||||||
|
Loading…
Reference in New Issue
Block a user