diff --git a/README.md b/README.md index 817e826..cb9684a 100644 --- a/README.md +++ b/README.md @@ -1,6 +1,6 @@ # ML++ -Machine learning is a vast and exiciting discipline, garnering attention from specialists of many fields. Unfortunately, for C++ programmers and enthusiasts, there appears to be a lack of support in the field of machine learning. To fill that void and give C++ a true foothold in the ML sphere, this library was written. My intent with this library is for it to act as a crossroad between low-level developers and machine learning engineers. +Machine learning is a vast and exiciting discipline, garnering attention from specialists of many fields. Unfortunately, for C++ programmers and enthusiasts, there appears to be a lack of support in the field of machine learning. To fill that void and give C++ a true foothold in the ML sphere, this library was written. The intent with this library is for it to act as a crossroad between low-level developers and machine learning engineers.
## Citations
-Various different materials helped me along the way of creating ML++, and I would like to give credit to them here. [This](https://www.tutorialspoint.com/cplusplus-program-to-compute-determinant-of-a-matrix) article by TutorialsPoint was a big help when trying to implement the determinant of a matrix, and [this](https://www.geeksforgeeks.org/adjoint-inverse-matrix/) article by GeeksForGeeks was very helpful when trying to take the adjoint and inverse of a matrix. Lastly, I would like to thank [this](https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2) article by Towards Data Science which helped illustrate a practical definition of the Hinge Loss activation function and its gradient when optimizing with SGD.
+Various different materials helped me along the way of creating ML++, and I would like to give credit to several of them here. [This](https://www.tutorialspoint.com/cplusplus-program-to-compute-determinant-of-a-matrix) article by TutorialsPoint was a big help when trying to implement the determinant of a matrix, and [this](https://www.geeksforgeeks.org/adjoint-inverse-matrix/) article by GeeksForGeeks was very helpful when trying to take the adjoint and inverse of a matrix. Lastly, I would like to thank [this](https://towardsdatascience.com/svm-implementation-from-scratch-python-2db2fc52e5c2) article by Towards Data Science which helped illustrate a practical definition of the Hinge Loss function and its gradient when optimizing with SGD.