This commit is contained in:
novak_99 2022-01-28 17:27:35 -08:00
parent 6a3b1ebefb
commit 47b29071fd
12 changed files with 394 additions and 13 deletions

BIN
.DS_Store vendored

Binary file not shown.

BIN
MLPP/.DS_Store vendored

Binary file not shown.

View File

@ -554,7 +554,7 @@ void ANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double
void ANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha){ void ANN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha){
LinAlg alg; LinAlg alg;
if(!network.empty()){ if(!network.empty()){
outputLayer = new OutputLayer(network[0].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha); outputLayer = new OutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
} }
else{ else{
outputLayer = new OutputLayer(k, activation, loss, inputSet, weightInit, reg, lambda, alpha); outputLayer = new OutputLayer(k, activation, loss, inputSet, weightInit, reg, lambda, alpha);
@ -612,6 +612,8 @@ void ANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double
} }
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> ANN::computeGradients(std::vector<double> y_hat, std::vector<double> outputSet){ std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> ANN::computeGradients(std::vector<double> y_hat, std::vector<double> outputSet){
std::cout << "BEGIN" << std::endl;
std::cout << k << std::endl;
class Cost cost; class Cost cost;
Activation avn; Activation avn;
LinAlg alg; LinAlg alg;
@ -630,13 +632,12 @@ void ANN::Adam(double learning_rate, int max_epoch, int mini_batch_size, double
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1)); network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta); std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for(int i = network.size() - 2; i >= 0; i--){ for(int i = network.size() - 2; i >= 0; i--){
auto hiddenLayerAvn = network[i].activation_map[network[i].activation]; auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, network[i + 1].weights), (avn.*hiddenLayerAvn)(network[i].z, 1)); network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta); std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well. cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
} }

Binary file not shown.

290
MLPP/GAN/GAN.cpp Normal file
View File

@ -0,0 +1,290 @@
//
// GAN.cpp
//
// Created by Marc Melikyan on 11/4/20.
//
#include "GAN.hpp"
#include "Activation/Activation.hpp"
#include "LinAlg/LinAlg.hpp"
#include "Regularization/Reg.hpp"
#include "Utilities/Utilities.hpp"
#include "Cost/Cost.hpp"
#include <iostream>
#include <cmath>
namespace MLPP {
GAN::GAN(double k, std::vector<std::vector<double>> outputSet)
: outputSet(outputSet), n(outputSet.size()), k(k)
{
}
GAN::~GAN(){
delete outputLayer;
}
std::vector<std::vector<double>> GAN::generateExample(int n){
LinAlg alg;
return modelSetTestGenerator(alg.gaussianNoise(n, k));
}
void GAN::gradientDescent(double learning_rate, int max_epoch, bool UI){
class Cost cost;
LinAlg alg;
double cost_prev = 0;
int epoch = 1;
forwardPass();
while(true){
cost_prev = Cost(y_hat, alg.onevec(n));
// Training of the discriminator.
std::vector<std::vector<double>> generatorInputSet = alg.gaussianNoise(n, k);
std::vector<std::vector<double>> discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
discriminatorInputSet.insert(discriminatorInputSet.end(), outputSet.begin(), outputSet.end()); // Fake + real inputs.
std::vector<double> y_hat = modelSetTestDiscriminator(discriminatorInputSet);
std::vector<double> outputSet = alg.zerovec(n);
std::vector<double> outputSetReal = alg.onevec(n);
outputSet.insert(outputSet.end(), outputSetReal.begin(), outputSetReal.end()); // Fake + real output scores.
auto [cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad] = computeDiscriminatorGradients(y_hat, outputSet);
cumulativeDiscriminatorHiddenLayerWGrad = alg.scalarMultiply(learning_rate/n, cumulativeDiscriminatorHiddenLayerWGrad);
outputDiscriminatorWGrad = alg.scalarMultiply(learning_rate/n, outputDiscriminatorWGrad);
updateDiscriminatorParameters(cumulativeDiscriminatorHiddenLayerWGrad, outputDiscriminatorWGrad, learning_rate);
// Training of the generator.
generatorInputSet = alg.gaussianNoise(n, k);
discriminatorInputSet = modelSetTestGenerator(generatorInputSet);
y_hat = modelSetTestDiscriminator(discriminatorInputSet);
outputSet = alg.onevec(n);
std::vector<std::vector<std::vector<double>>> cumulativeGeneratorHiddenLayerWGrad = computeGeneratorGradients(y_hat, outputSet);
cumulativeGeneratorHiddenLayerWGrad = alg.scalarMultiply(learning_rate/n, cumulativeGeneratorHiddenLayerWGrad);
updateGeneratorParameters(cumulativeGeneratorHiddenLayerWGrad, learning_rate);
forwardPass();
if(UI) { GAN::UI(epoch, cost_prev, GAN::y_hat, alg.onevec(n)); }
epoch++;
if(epoch > max_epoch) { break; }
}
}
double GAN::score(){
LinAlg alg;
Utilities util;
forwardPass();
return util.performance(y_hat, alg.onevec(n));
}
void GAN::save(std::string fileName){
Utilities util;
if(!network.empty()){
util.saveParameters(fileName, network[0].weights, network[0].bias, 0, 1);
for(int i = 1; i < network.size(); i++){
util.saveParameters(fileName, network[i].weights, network[i].bias, 1, i + 1);
}
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 1, network.size() + 1);
}
else{
util.saveParameters(fileName, outputLayer->weights, outputLayer->bias, 0, network.size() + 1);
}
}
void GAN::addLayer(int n_hidden, std::string activation, std::string weightInit, std::string reg, double lambda, double alpha){
LinAlg alg;
if(network.empty()){
network.push_back(HiddenLayer(n_hidden, activation, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha));
network[0].forwardPass();
}
else{
network.push_back(HiddenLayer(n_hidden, activation, network[network.size() - 1].a, weightInit, reg, lambda, alpha));
network[network.size() - 1].forwardPass();
}
}
void GAN::addOutputLayer(std::string activation, std::string loss, std::string weightInit, std::string reg, double lambda, double alpha){
LinAlg alg;
if(!network.empty()){
outputLayer = new OutputLayer(network[network.size() - 1].n_hidden, activation, loss, network[network.size() - 1].a, weightInit, reg, lambda, alpha);
}
else{
outputLayer = new OutputLayer(k, activation, loss, alg.gaussianNoise(n, k), weightInit, reg, lambda, alpha);
}
}
std::vector<std::vector<double>> GAN::modelSetTestGenerator(std::vector<std::vector<double>> X){
if(!network.empty()){
network[0].input = X;
network[0].forwardPass();
for(int i = 1; i <= network.size()/2; i++){
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
}
return network[network.size()/2].a;
}
std::vector<double> GAN::modelSetTestDiscriminator(std::vector<std::vector<double>> X){
if(!network.empty()){
for(int i = network.size()/2 + 1; i < network.size(); i++){
if(i == network.size()/2 + 1){
network[i].input = X;
}
else { network[i].input = network[i - 1].a; }
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
}
outputLayer->forwardPass();
return outputLayer->a;
}
double GAN::Cost(std::vector<double> y_hat, std::vector<double> y){
Reg regularization;
class Cost cost;
double totalRegTerm = 0;
auto cost_function = outputLayer->cost_map[outputLayer->cost];
if(!network.empty()){
for(int i = 0; i < network.size() - 1; i++){
totalRegTerm += regularization.regTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg);
}
}
return (cost.*cost_function)(y_hat, y) + totalRegTerm + regularization.regTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg);
}
void GAN::forwardPass(){
LinAlg alg;
if(!network.empty()){
network[0].input = alg.gaussianNoise(n, k);
network[0].forwardPass();
for(int i = 1; i < network.size(); i++){
network[i].input = network[i - 1].a;
network[i].forwardPass();
}
outputLayer->input = network[network.size() - 1].a;
}
else{ // Should never happen, though.
outputLayer->input = alg.gaussianNoise(n, k);
}
outputLayer->forwardPass();
y_hat = outputLayer->a;
}
void GAN::updateDiscriminatorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, std::vector<double> outputLayerUpdation, double learning_rate){
LinAlg alg;
outputLayer->weights = alg.subtraction(outputLayer->weights, outputLayerUpdation);
outputLayer->bias -= learning_rate * alg.sum_elements(outputLayer->delta) / n;
if(!network.empty()){
network[network.size() - 1].weights = alg.subtraction(network[network.size() - 1].weights, hiddenLayerUpdations[0]);
network[network.size() - 1].bias = alg.subtractMatrixRows(network[network.size() - 1].bias, alg.scalarMultiply(learning_rate/n, network[network.size() - 1].delta));
for(int i = network.size() - 2; i > network.size()/2; i--){
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate/n, network[i].delta));
}
}
}
void GAN::updateGeneratorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, double learning_rate){
LinAlg alg;
if(!network.empty()){
for(int i = network.size()/2; i >= 0; i--){
//std::cout << network[i].weights.size() << "x" << network[i].weights[0].size() << std::endl;
//std::cout << hiddenLayerUpdations[(network.size() - 2) - i + 1].size() << "x" << hiddenLayerUpdations[(network.size() - 2) - i + 1][0].size() << std::endl;
network[i].weights = alg.subtraction(network[i].weights, hiddenLayerUpdations[(network.size() - 2) - i + 1]);
network[i].bias = alg.subtractMatrixRows(network[i].bias, alg.scalarMultiply(learning_rate/n, network[i].delta));
}
}
}
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> GAN::computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet){
class Cost cost;
Activation avn;
LinAlg alg;
Reg regularization;
std::vector<std::vector<std::vector<double>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<double> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if(!network.empty()){
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
//std::cout << "HIDDENLAYER FIRST:" << hiddenLayerWGrad.size() << "x" << hiddenLayerWGrad[0].size() << std::endl;
//std::cout << "WEIGHTS SECOND:" << network[network.size() - 1].weights.size() << "x" << network[network.size() - 1].weights[0].size() << std::endl;
for(int i = network.size() - 2; i > network.size()/2; i--){
auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return {cumulativeHiddenLayerWGrad, outputWGrad};
}
std::vector<std::vector<std::vector<double>>> GAN::computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet){
class Cost cost;
Activation avn;
LinAlg alg;
Reg regularization;
std::vector<std::vector<std::vector<double>>> cumulativeHiddenLayerWGrad; // Tensor containing ALL hidden grads.
auto costDeriv = outputLayer->costDeriv_map[outputLayer->cost];
auto outputAvn = outputLayer->activation_map[outputLayer->activation];
outputLayer->delta = alg.hadamard_product((cost.*costDeriv)(y_hat, outputSet), (avn.*outputAvn)(outputLayer->z, 1));
std::vector<double> outputWGrad = alg.mat_vec_mult(alg.transpose(outputLayer->input), outputLayer->delta);
outputWGrad = alg.addition(outputWGrad, regularization.regDerivTerm(outputLayer->weights, outputLayer->lambda, outputLayer->alpha, outputLayer->reg));
if(!network.empty()){
auto hiddenLayerAvn = network[network.size() - 1].activation_map[network[network.size() - 1].activation];
network[network.size() - 1].delta = alg.hadamard_product(alg.outerProduct(outputLayer->delta, outputLayer->weights), (avn.*hiddenLayerAvn)(network[network.size() - 1].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[network.size() - 1].input), network[network.size() - 1].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[network.size() - 1].weights, network[network.size() - 1].lambda, network[network.size() - 1].alpha, network[network.size() - 1].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
for(int i = network.size() - 2; i >= 0; i--){
auto hiddenLayerAvn = network[i].activation_map[network[i].activation];
network[i].delta = alg.hadamard_product(alg.matmult(network[i + 1].delta, alg.transpose(network[i + 1].weights)), (avn.*hiddenLayerAvn)(network[i].z, 1));
std::vector<std::vector<double>> hiddenLayerWGrad = alg.matmult(alg.transpose(network[i].input), network[i].delta);
cumulativeHiddenLayerWGrad.push_back(alg.addition(hiddenLayerWGrad, regularization.regDerivTerm(network[i].weights, network[i].lambda, network[i].alpha, network[i].reg))); // Adding to our cumulative hidden layer grads. Maintain reg terms as well.
}
}
return cumulativeHiddenLayerWGrad;
}
void GAN::UI(int epoch, double cost_prev, std::vector<double> y_hat, std::vector<double> outputSet){
Utilities::CostInfo(epoch, cost_prev, Cost(y_hat, outputSet));
std::cout << "Layer " << network.size() + 1 << ": " << std::endl;
Utilities::UI(outputLayer->weights, outputLayer->bias);
if(!network.empty()){
for(int i = network.size() - 1; i >= 0; i--){
std::cout << "Layer " << i + 1 << ": " << std::endl;
Utilities::UI(network[i].weights, network[i].bias);
}
}
}
}

57
MLPP/GAN/GAN.hpp Normal file
View File

@ -0,0 +1,57 @@
//
// GAN.hpp
//
// Created by Marc Melikyan on 11/4/20.
//
#ifndef GAN_hpp
#define GAN_hpp
#include "HiddenLayer/HiddenLayer.hpp"
#include "OutputLayer/OutputLayer.hpp"
#include <vector>
#include <tuple>
#include <string>
namespace MLPP{
class GAN{
public:
GAN(double k, std::vector<std::vector<double>> outputSet);
~GAN();
std::vector<std::vector<double>> generateExample(int n);
double modelTest(std::vector<double> x);
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
double score();
void save(std::string fileName);
void addLayer(int n_hidden, std::string activation, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
void addOutputLayer(std::string activation, std::string loss, std::string weightInit = "Default", std::string reg = "None", double lambda = 0.5, double alpha = 0.5);
private:
std::vector<std::vector<double>> modelSetTestGenerator(std::vector<std::vector<double>> X); // Evaluator for the generator of the gan.
std::vector<double> modelSetTestDiscriminator(std::vector<std::vector<double>> X); // Evaluator for the discriminator of the gan.
double Cost(std::vector<double> y_hat, std::vector<double> y);
void forwardPass();
void updateDiscriminatorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, std::vector<double> outputLayerUpdation, double learning_rate);
void updateGeneratorParameters(std::vector<std::vector<std::vector<double>>> hiddenLayerUpdations, double learning_rate);
std::tuple<std::vector<std::vector<std::vector<double>>>, std::vector<double>> computeDiscriminatorGradients(std::vector<double> y_hat, std::vector<double> outputSet);
std::vector<std::vector<std::vector<double>>> computeGeneratorGradients(std::vector<double> y_hat, std::vector<double> outputSet);
void UI(int epoch, double cost_prev, std::vector<double> y_hat, std::vector<double> outputSet);
std::vector<std::vector<double>> outputSet;
std::vector<double> y_hat;
std::vector<HiddenLayer> network;
OutputLayer *outputLayer;
int n;
int k;
};
}
#endif /* GAN_hpp */

View File

@ -7,11 +7,28 @@
#include "LinAlg.hpp" #include "LinAlg.hpp"
#include "Stat/Stat.hpp" #include "Stat/Stat.hpp"
#include <iostream> #include <iostream>
#include <random>
#include <map> #include <map>
#include <cmath> #include <cmath>
namespace MLPP{ namespace MLPP{
std::vector<std::vector<double>> LinAlg::gaussianNoise(int n, int m){
std::random_device rd;
std::default_random_engine generator(rd());
std::vector<std::vector<double>> A;
A.resize(n);
for(int i = 0; i < n; i++){
A[i].resize(m);
for(int j = 0; j < m; j++){
std::normal_distribution<double> distribution(0, 1); // Standard normal distribution. Mean of 0, std of 1.
A[i][j] = distribution(generator);
}
}
return A;
}
std::vector<std::vector<double>> LinAlg::addition(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B){ std::vector<std::vector<double>> LinAlg::addition(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B){
std::vector<std::vector<double>> C; std::vector<std::vector<double>> C;
C.resize(A.size()); C.resize(A.size());

View File

@ -16,6 +16,8 @@ namespace MLPP{
// MATRIX FUNCTIONS // MATRIX FUNCTIONS
std::vector<std::vector<double>> gaussianNoise(int n, int m);
std::vector<std::vector<double>> addition(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B); std::vector<std::vector<double>> addition(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B);
std::vector<std::vector<double>> subtraction(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B); std::vector<std::vector<double>> subtraction(std::vector<std::vector<double>> A, std::vector<std::vector<double>> B);

View File

@ -12,7 +12,7 @@ Begin by downloading the header files for the ML++ library. You can do this by c
``` ```
git clone https://github.com/novak-99/MLPP git clone https://github.com/novak-99/MLPP
``` ```
Next, execute the "./buildSO.sh" shell script: Next, execute the "buildSO.sh" shell script:
``` ```
sudo ./buildSO.sh sudo ./buildSO.sh
``` ```

BIN
a.out

Binary file not shown.

View File

@ -1,6 +1,6 @@
g++ -I MLPP -c -fPIC main.cpp MLPP/Stat/Stat.cpp MLPP/LinAlg/LinAlg.cpp MLPP/Regularization/Reg.cpp MLPP/Activation/Activation.cpp MLPP/Utilities/Utilities.cpp MLPP/Data/Data.cpp MLPP/Cost/Cost.cpp MLPP/ANN/ANN.cpp MLPP/HiddenLayer/HiddenLayer.cpp MLPP/OutputLayer/OutputLayer.cpp MLPP/MLP/MLP.cpp MLPP/LinReg/LinReg.cpp MLPP/LogReg/LogReg.cpp MLPP/UniLinReg/UniLinReg.cpp MLPP/CLogLogReg/CLogLogReg.cpp MLPP/ExpReg/ExpReg.cpp MLPP/ProbitReg/ProbitReg.cpp MLPP/SoftmaxReg/SoftmaxReg.cpp MLPP/TanhReg/TanhReg.cpp MLPP/SoftmaxNet/SoftmaxNet.cpp MLPP/Convolutions/Convolutions.cpp MLPP/AutoEncoder/AutoEncoder.cpp MLPP/MultinomialNB/MultinomialNB.cpp MLPP/BernoulliNB/BernoulliNB.cpp MLPP/GaussianNB/GaussianNB.cpp MLPP/KMeans/KMeans.cpp MLPP/kNN/kNN.cpp MLPP/PCA/PCA.cpp MLPP/OutlierFinder/OutlierFinder.cpp MLPP/MANN/MANN.cpp MLPP/MultiOutputLayer/MultiOutputLayer.cpp MLPP/SVC/SVC.cpp MLPP/NumericalAnalysis/NumericalAnalysis.cpp MLPP/DualSVC/DualSVC.cpp --std=c++17 g++ -I MLPP -c -fPIC main.cpp MLPP/Stat/Stat.cpp MLPP/LinAlg/LinAlg.cpp MLPP/Regularization/Reg.cpp MLPP/Activation/Activation.cpp MLPP/Utilities/Utilities.cpp MLPP/Data/Data.cpp MLPP/Cost/Cost.cpp MLPP/ANN/ANN.cpp MLPP/HiddenLayer/HiddenLayer.cpp MLPP/OutputLayer/OutputLayer.cpp MLPP/MLP/MLP.cpp MLPP/LinReg/LinReg.cpp MLPP/LogReg/LogReg.cpp MLPP/UniLinReg/UniLinReg.cpp MLPP/CLogLogReg/CLogLogReg.cpp MLPP/ExpReg/ExpReg.cpp MLPP/ProbitReg/ProbitReg.cpp MLPP/SoftmaxReg/SoftmaxReg.cpp MLPP/TanhReg/TanhReg.cpp MLPP/SoftmaxNet/SoftmaxNet.cpp MLPP/Convolutions/Convolutions.cpp MLPP/AutoEncoder/AutoEncoder.cpp MLPP/MultinomialNB/MultinomialNB.cpp MLPP/BernoulliNB/BernoulliNB.cpp MLPP/GaussianNB/GaussianNB.cpp MLPP/KMeans/KMeans.cpp MLPP/kNN/kNN.cpp MLPP/PCA/PCA.cpp MLPP/OutlierFinder/OutlierFinder.cpp MLPP/MANN/MANN.cpp MLPP/MultiOutputLayer/MultiOutputLayer.cpp MLPP/SVC/SVC.cpp MLPP/NumericalAnalysis/NumericalAnalysis.cpp MLPP/DualSVC/DualSVC.cpp --std=c++17
g++ -shared -o MLPP.so Reg.o LinAlg.o Stat.o Activation.o LinReg.o Utilities.o Cost.o LogReg.o ProbitReg.o ExpReg.o CLogLogReg.o SoftmaxReg.o TanhReg.o kNN.o KMeans.o UniLinReg.o SoftmaxNet.o MLP.o AutoEncoder.o HiddenLayer.o OutputLayer.o ANN.o BernoulliNB.o GaussianNB.o MultinomialNB.o Convolutions.o OutlierFinder.o Data.o MultiOutputLayer.o MANN.o SVC.o NumericalAnalysis.o DualSVC.o g++ -shared -o MLPP.so Reg.o LinAlg.o Stat.o Activation.o LinReg.o Utilities.o Cost.o LogReg.o ProbitReg.o ExpReg.o CLogLogReg.o SoftmaxReg.o TanhReg.o kNN.o KMeans.o UniLinReg.o SoftmaxNet.o MLP.o AutoEncoder.o HiddenLayer.o OutputLayer.o ANN.o BernoulliNB.o GaussianNB.o MultinomialNB.o Convolutions.o OutlierFinder.o Data.o MultiOutputLayer.o MANN.o SVC.o NumericalAnalysis.o DualSVC.o
mv MLPP.so SharedLib sudo mv MLPP.so /usr/local/lib
rm *.o rm *.o

View File

@ -47,6 +47,7 @@
#include "MLPP/SVC/SVC.hpp" #include "MLPP/SVC/SVC.hpp"
#include "MLPP/NumericalAnalysis/NumericalAnalysis.hpp" #include "MLPP/NumericalAnalysis/NumericalAnalysis.hpp"
#include "MLPP/DualSVC/DualSVC.hpp" #include "MLPP/DualSVC/DualSVC.hpp"
#include "MLPP/GAN/GAN.hpp"
using namespace MLPP; using namespace MLPP;
@ -154,8 +155,8 @@ int main() {
std::vector<double> w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}; std::vector<double> w = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1};
// std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl; // std::cout << "Arithmetic Mean: " << stat.mean(x) << std::endl;
std::cout << "Median: " << stat.median(x) << std::endl; // std::cout << "Median: " << stat.median(x) << std::endl;
alg.printVector(x); // alg.printVector(x);
// alg.printVector(stat.mode(x)); // alg.printVector(stat.mode(x));
// std::cout << "Range: " << stat.range(x) << std::endl; // std::cout << "Range: " << stat.range(x) << std::endl;
// std::cout << "Midrange: " << stat.midrange(x) << std::endl; // std::cout << "Midrange: " << stat.midrange(x) << std::endl;
@ -365,7 +366,7 @@ int main() {
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}}; // std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
// std::vector<double> outputSet = {0,1,1,0}; // std::vector<double> outputSet = {0,1,1,0};
// ANN ann(alg.transpose(inputSet), outputSet); // ANN ann(alg.transpose(inputSet), outputSet);
// //ann.addLayer(10, "RELU"); // //ann.addLayer(10, "Sigmoid");
// ann.addLayer(10, "Sigmoid"); // ann.addLayer(10, "Sigmoid");
// ann.addOutputLayer("Sigmoid", "LogLoss"); // ann.addOutputLayer("Sigmoid", "LogLoss");
// //ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1); // //ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1);
@ -375,6 +376,19 @@ int main() {
// alg.printVector(ann.modelSetTest(alg.transpose(inputSet))); // alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
// std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl; // std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
std::vector<std::vector<double>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
{2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
//Vector outputSet = {0,1,1,0};
GAN gan(2, alg.transpose(outputSet));
gan.addLayer(5, "Sigmoid");
gan.addLayer(2, "RELU");
gan.addLayer(5, "Sigmoid");
gan.addOutputLayer("Sigmoid", "LogLoss");
gan.gradientDescent(0.1, 25000, 0);
std::cout << "GENERATED INPUT: (Gaussian-sampled noise):" << std::endl;
alg.printMatrix(gan.generateExample(5));
// typedef std::vector<std::vector<double>> Matrix; // typedef std::vector<std::vector<double>> Matrix;
// typedef std::vector<double> Vector; // typedef std::vector<double> Vector;
@ -382,10 +396,10 @@ int main() {
// Vector outputSet = {0,1,1,0}; // Vector outputSet = {0,1,1,0};
// ANN ann(inputSet, outputSet); // ANN ann(inputSet, outputSet);
// ann.addLayer(10, "Sigmoid"); // ann.addLayer(5, "Sigmoid");
// ann.addLayer(10, "Sigmoid"); // Add more layers as needed. // ann.addLayer(8, "Sigmoid"); // Add more layers as needed.
// ann.addOutputLayer("Sigmoid", "LogLoss"); // ann.addOutputLayer("Sigmoid", "LogLoss");
// ann.gradientDescent(0.1, 20000, 0); // ann.gradientDescent(1, 20000, 1);
// Vector predictions = ann.modelSetTest(inputSet); // Vector predictions = ann.modelSetTest(inputSet);
// alg.printVector(predictions); // Testing out the model's preds for train set. // alg.printVector(predictions); // Testing out the model's preds for train set.