mirror of
https://github.com/Relintai/MLPP.git
synced 2024-11-12 10:15:01 +01:00
explicitly added sgd function in ann
This commit is contained in:
parent
4cc61e4c1e
commit
2a21d25999
@ -13,6 +13,7 @@
|
||||
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <random>
|
||||
|
||||
namespace MLPP {
|
||||
ANN::ANN(std::vector<std::vector<double>> inputSet, std::vector<double> outputSet)
|
||||
@ -87,6 +88,40 @@ namespace MLPP {
|
||||
}
|
||||
}
|
||||
|
||||
void ANN::SGD(double learning_rate, int max_epoch, bool UI){
|
||||
class Cost cost;
|
||||
LinAlg alg;
|
||||
|
||||
double cost_prev = 0;
|
||||
int epoch = 1;
|
||||
double initial_learning_rate = learning_rate;
|
||||
|
||||
while(true){
|
||||
learning_rate = applyLearningRateScheduler(initial_learning_rate, decayConstant, epoch, dropRate);
|
||||
|
||||
std::random_device rd;
|
||||
std::default_random_engine generator(rd());
|
||||
std::uniform_int_distribution<int> distribution(0, int(n - 1));
|
||||
int outputIndex = distribution(generator);
|
||||
|
||||
std::vector<double> y_hat = modelSetTest({inputSet[outputIndex]});
|
||||
cost_prev = Cost({y_hat}, {outputSet[outputIndex]});
|
||||
|
||||
auto [cumulativeHiddenLayerWGrad, outputWGrad] = computeGradients(y_hat, {outputSet[outputIndex]});
|
||||
cumulativeHiddenLayerWGrad = alg.scalarMultiply(learning_rate/n, cumulativeHiddenLayerWGrad);
|
||||
outputWGrad = alg.scalarMultiply(learning_rate/n, outputWGrad);
|
||||
|
||||
updateParameters(cumulativeHiddenLayerWGrad, outputWGrad, learning_rate); // subject to change. may want bias to have this matrix too.
|
||||
y_hat = modelSetTest({inputSet[outputIndex]});
|
||||
|
||||
if(UI) { ANN::UI(epoch, cost_prev, y_hat, {outputSet[outputIndex]}); }
|
||||
|
||||
epoch++;
|
||||
if(epoch > max_epoch) { break; }
|
||||
}
|
||||
forwardPass();
|
||||
}
|
||||
|
||||
void ANN::MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI){
|
||||
class Cost cost;
|
||||
LinAlg alg;
|
||||
|
@ -23,6 +23,7 @@ class ANN{
|
||||
std::vector<double> modelSetTest(std::vector<std::vector<double>> X);
|
||||
double modelTest(std::vector<double> x);
|
||||
void gradientDescent(double learning_rate, int max_epoch, bool UI = 1);
|
||||
void SGD(double learning_rate, int max_epoch, bool UI = 1);
|
||||
void MBGD(double learning_rate, int max_epoch, int mini_batch_size, bool UI = 1);
|
||||
void Momentum(double learning_rate, int max_epoch, int mini_batch_size, double gamma, bool NAG, bool UI = 1);
|
||||
void Adagrad(double learning_rate, int max_epoch, int mini_batch_size, double e, bool UI = 1);
|
||||
|
@ -13,6 +13,7 @@
|
||||
namespace MLPP{
|
||||
|
||||
// DCT ii.
|
||||
// https://www.mathworks.com/help/images/discrete-cosine-transform.html
|
||||
std::vector<std::vector<double>> Transforms::discreteCosineTransform(std::vector<std::vector<double>> A){
|
||||
LinAlg alg;
|
||||
A = alg.scalarAdd(-128, A); // Center around 0.
|
||||
|
50
main.cpp
50
main.cpp
@ -363,20 +363,22 @@ int main() {
|
||||
// Possible Weight Init Methods: Default, Uniform, HeNormal, HeUniform, XavierNormal, XavierUniform
|
||||
// Possible Activations: Linear, Sigmoid, Swish, Softplus, Softsign, CLogLog, Ar{Sinh, Cosh, Tanh, Csch, Sech, Coth}, GaussianCDF, GELU, UnitStep
|
||||
// Possible Loss Functions: MSE, RMSE, MBE, LogLoss, CrossEntropy, HingeLoss
|
||||
// std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
||||
// std::vector<double> outputSet = {0,1,1,0};
|
||||
// ANN ann(alg.transpose(inputSet), outputSet);
|
||||
// ann.addLayer(2, "Sigmoid");
|
||||
// ann.addLayer(2, "Sigmoid");
|
||||
// ann.addOutputLayer("Sigmoid", "LogLoss");
|
||||
//ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1);
|
||||
//ann.Adadelta(1, 1000, 2, 0.9, 0.000001, 1);
|
||||
//ann.Momentum(0.1, 8000, 2, 0.9, true, 1);
|
||||
std::vector<std::vector<double>> inputSet = {{0,0,1,1}, {0,1,0,1}};
|
||||
std::vector<double> outputSet = {0,1,1,0};
|
||||
ANN ann(alg.transpose(inputSet), outputSet);
|
||||
ann.addLayer(2, "Sigmoid");
|
||||
ann.addLayer(2, "Sigmoid");
|
||||
ann.addOutputLayer("Sigmoid", "LogLoss");
|
||||
|
||||
|
||||
// ann.AMSGrad(0.1, 10000, 1, 0.9, 0.999, 0.000001, 1);
|
||||
// ann.Adadelta(1, 1000, 2, 0.9, 0.000001, 1);
|
||||
// ann.Momentum(0.1, 8000, 2, 0.9, true, 1);
|
||||
|
||||
//ann.setLearningRateScheduler("Step", 0.5, 1000);
|
||||
// ann.gradientDescent(1, 5, 1);
|
||||
//alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
|
||||
//std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
||||
ann.SGD(1, 30000);
|
||||
alg.printVector(ann.modelSetTest(alg.transpose(inputSet)));
|
||||
std::cout << "ACCURACY: " << 100 * ann.score() << "%" << std::endl;
|
||||
|
||||
//std::vector<std::vector<double>> outputSet = {{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20},
|
||||
// {2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40}};
|
||||
@ -477,20 +479,20 @@ int main() {
|
||||
|
||||
// alg.printTensor(data.rgb2xyz(tensorSet));
|
||||
|
||||
std::vector<std::vector<double>> input = {
|
||||
{62,55,55,54,49,48,47,55},
|
||||
{62,57,54,52,48,47,48,53},
|
||||
{61,60,52,49,48,47,49,54},
|
||||
{63,61,60,60,63,65,68,65},
|
||||
{67,67,70,74,79,85,91,92},
|
||||
{82,95,101,106,114,115,112,117},
|
||||
{96,111,115,119,128,128,130,127},
|
||||
{109,121,127,133,139,141,140,133},
|
||||
};
|
||||
// std::vector<std::vector<double>> input = {
|
||||
// {62,55,55,54,49,48,47,55},
|
||||
// {62,57,54,52,48,47,48,53},
|
||||
// {61,60,52,49,48,47,49,54},
|
||||
// {63,61,60,60,63,65,68,65},
|
||||
// {67,67,70,74,79,85,91,92},
|
||||
// {82,95,101,106,114,115,112,117},
|
||||
// {96,111,115,119,128,128,130,127},
|
||||
// {109,121,127,133,139,141,140,133},
|
||||
// };
|
||||
|
||||
Transforms trans;
|
||||
// Transforms trans;
|
||||
|
||||
alg.printMatrix(trans.discreteCosineTransform(input));
|
||||
// alg.printMatrix(trans.discreteCosineTransform(input));
|
||||
|
||||
// alg.printMatrix(conv.convolve(input, conv.getPrewittVertical(), 1)); // Can use padding
|
||||
// alg.printMatrix(conv.pool(input, 4, 4, "Max")); // Can use Max, Min, or Average pooling.
|
||||
|
Loading…
Reference in New Issue
Block a user